簡易檢索 / 詳目顯示

研究生: 杜怡萱
Tu, Yi-Hsuan
論文名稱: RC學校建築結構振動台試驗與耐震診斷分析研究
Shaking Table Test and Seismic Analysis of RC School Building Structures
指導教授: 許茂雄
Sheu, Maw-Shyong
學位類別: 博士
Doctor
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 228
中文關鍵詞: 鋼筋混凝土學校建築振動台試驗耐震診斷
外文關鍵詞: seismic analysis, shaking table test, school building, reinforced concrete
相關次數: 點閱:161下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   耐震診斷是建築結構耐震策略中最基本而必要的工具,可以幫助研究者和工程師掌握結構系統的特性與弱點,擬定適宜的耐震措施。台灣的學校建築通常具有典型的平面及結構系統,因而破壞也常呈現固定模式。從過去震害調查中,這些典型破壞模式已被觀察到並定性化。在本文中則進一步利用振動台之模擬地震試驗,對典型校舍建築之結構動態行為與破壞過程進行更深入且定量性的觀察與分析,並作為現有的中低層RC建築結構耐震診斷方法之驗證與修正依據,期望改進後之耐震診斷方法能提供在快速評估、震後補強等研究或工程方面之應用。
      由三座不同結構系統之1/3縮尺RC校舍振動台試驗結果發現,由於現行結構設計方式多忽略樓板與窗台等非主要結構元素,造成對與樓板一體相連的梁構件強度與剛度之低估,而使得大部分損害集中於柱、牆等垂直構件,呈現弱柱強梁破壞模式。根據此一弱柱強梁破壞模式,本文之中低層RC建築結構非線性推垮曲線分析法可藉由疊合個別垂直構件側力-變形曲線的方式,求出整體樓層之層剪力-層間變位曲線。本文再根據能量消耗概念與RC材料之恢復力環特性,及由多次加載振動試驗結果所得之經驗參數,嘗試建立RC柱構件之多次震害後折損規則,依構件破壞模式不同,對每次震後側力-變形曲線加以剛度與強度逐次折減。最後則提出一套適用於中低層RC建築結構之實用耐震診斷法,依照合理假設之地震力豎向分配型態及ATC-40建議公式,可再將層剪力-層間變位曲線換算為基底剪力-屋頂位移能力曲線,並計算對應之等效週期、阻尼比與PGA,除可評估結構整體之崩塌地表加速度外,也可由特定PGA反推對應的構件破壞程度,亦可配合震後折損修正,應用於結構之震後與經年耐震評估。
      補強前後試體之試驗結果顯示,壁量均勻且施作良好的翼牆補強可提升中低層RC校舍結構之耐震能力。試體之宏觀結構反應、破壞程度與動態特性之變化情形大致可互相對應,將損害度指標與基本振動週期關係量化時,則僅呈現不甚明確之二次曲線型正相關趨勢。經過考慮雙軸彎矩互制效應、箍筋之剪力強度計算方式、考慮撓剪互制效應、修正降伏前撓曲剛度折減係數、考慮握裹滑移變位、修正最大變位限制、考慮P-D效應以及RC牆之面外方向貢獻等幾項修正,本文修正後非線性推垮曲線分析法之預測曲線皆與試驗結果大致吻合。本文提出之中低層RC建築結構實用耐震診斷法經過與振動台試驗結果及實際校舍震害案例之比對,結果亦準確合理。

      Seismic analysis is the essential of seismic strategy for building structures. It can help researchers and engineers to recognize the characteristics and weakness of a structure, and determine proper measures for resisting earthquake. School buildings in Taiwan usually have typical plan and structure system; therefore result in typical failure patterns, which have been qualified in the investigations of past earthquakes. In this dissertation, a series of shaking table tests of typical school building structure models is employed to simulate earthquakes, thus the dynamic behaviors and damage details of specimens can be observed and analyzed quantitatively. The test results also provide the basis for modification of a present seismic analysis method for low-rise RC building structures. It is expected that the improved method could be further used to related applications such like rapid seismic estimation and retrofitting after earthquake.
      The results of shaking table tests of three 1/3-scaled RC school building models with different structure systems show a common “weak-column-strong-beam” failure mode. It is due to the underestimation of performance of beam, which in the present design methodology in Taiwan is usually improperly considered as a rectangular section without linked slabs or windowsills. According to the “weak-column-strong-beam” behavior, this dissertation presents a nonlinear pushover analysis method for low-rise RC building structures, which can calculate story shear-displacement curve by summing lateral force-deflection curve of each individual vertical member. Then base on concept of energy dissipation, hysteretic behaviors of RC material, and experiential factors obtained from shaking table tests with repeated excitation, a deterioration rule for RC column after multiple earthquakes is established. According to the failure mode and damage condition in previous earthquake, the rule makes lateral force-deflection curve of RC column deteriorated by reducing stiffness and strength. Finally, a practical seismic analysis method is presented. Through a reasonable assumed distribution of lateral forces, the capacity curve can be derived from the story shear-displacement curves. And by using equations suggested by ATC-40, the corresponding capacity spectrum, period, damping ratio and PGA can also be obtained. This method can provide not only collapse PGA of a low-rise RC building structure, but also damage conditions of members at a specific PGA. Combining with the deterioration rule for RC column after multiple earthquakes, it can also be applied to seismic analysis for after-earthquake or aged buildings.
      The test results of new-built and retrofitted specimens’ show that well constructed and properly positioned wing-walls can increase the seismic performance of low-rise RC school building structures; likewise a separation with sufficient width between windowsill and column can prevent short-column effect. The structural responses, damage progress, and dynamic characteristics vary relatively to each other. However, an attempt to derive quantitative relationship between damage index and fundamental period just results in an unclear quadratic fitting. After modification of: biaxial bending effect, shear contribution of hoops, interaction of bending and shear, reducing factor for flexural stiffness before yielding, extra deflection due to bond slip, limitation of allowable maximum deflection, P-D effect, and RC walls’ contribution in out-of-plane direction, the modified analytical curves approximately match the test results. The comparison of analytical results of the practical seismic analysis method and results from shaking table test as well as two school buildings damaged in past earthquake also shows reasonable accuracy.

    表目錄 IV 圖目錄 VI 符號說明 XIII 第一章 緒論 1 1.1 研究動機與目的 1 1.1.1 研究動機 1 1.1.2 研究目的 1 1.2 文獻回顧 2 1.3 研究方法 5 1.4 本文適用範圍 5 第二章 1/3縮尺二層樓RC校舍結構模型振動台試體介紹 7 2.1 試體設計 8 2.1.1 試體斷面尺吋與配筋設計 8 2.1.2 人工質量 10 2.1.3 量測設備 12 2.2 試體製作 13 2.2.1 試體製作流程 13 2.2.2 材料性質 15 2.3 試驗過程 17 2.3.1 加載震波 17 2.3.2 試驗流程 18 本章圖片 20 第三章 1/3縮尺二層樓RC校舍結構模型振動台試驗結果 43 3.1 試體反應 43 3.1.1 樓板反應加速度,剪力與變位 43 3.1.2 結構動態特性 46 3.2 破壞性狀描述 48 3.2.1 補強前試體 48 3.2.2 補強後試體 68 3.3 結構反應比較與討論 93 3.3.1 基底剪力-屋頂位移遲滯曲線 93 3.3.2 各結構反應之宏觀關係 94 3.3.3 結構動態特性與損害度關係 95 3.4 小結 96 本章圖片 98 第四章 側力-變位曲線分析方法之修正與驗證 121 4.1 分析方法簡介 122 4.2 RC柱側力-變位曲線分析方法 123 4.2.1 原始分析方法 123 4.2.2 本文修正後分析方法 126 4.3 RC牆側力-變位曲線分析方法 132 4.4 磚牆側力-變位曲線分析方法 135 4.5 理論分析與振動台試驗結果之比較 137 4.5.1 理論分析模型之建立 137 4.5.2 比對結果與討論 138 4.6 小結 140 本章圖片 141 第五章 RC柱強度與剛度於多次地震後之折損規則 157 5.1 RC構材在往復載重下之行為特性 157 5.1.1 RC構材在往復載重下之恢復力環特性 157 5.1.2 往復載重對RC構材耐震性能之影響 158 5.2 本文之側力-變形曲線震後折損規則 159 5.3 理論分析與振動台試驗結果之比較 162 5.4 小結 162 本章圖片 164 第六章 最大地表加速度計算方法、驗證與應用 185 6.1 最大地表加速度計算方法 185 6.1.1 計算流程簡介 185 6.1.2 能力曲線與能力震譜 186 6.1.3 有效週期與等效阻尼比 189 6.1.4 最大地表加速度 191 6.2 理論分析與振動台試驗結果之比較 192 6.3 理論分析與實際震害案例之比較 195 6.3.1 民雄農工機電科第一工廠 195 6.3.2 民雄農工農機科第二工廠 197 6.4 本文耐震診斷方法之應用 198 6.5 小結 200 本章圖片 201 第七章 結論與建議 221 7.1 結論 221 7.2 建議 222 參考文獻 225

    1.1 Oliva, M. G., “Shaking Table Testing of a Reinforced Concrete Frame with Biaxial Response”, Earthquake Engineering Reseach Center, University of California, Berkeley, EERC-80/28, Oct. 1980.
    1.2 Bertero, V. V., Aktan, A. E., Charney, F. A. and Sause, R., “U.S.-Japan Cooperative Earthquake Research Program : Earthquake Simulation Tests and Associated Studies of a 1/5-scale Model of a 7-story Reinforced Concrete Test Structure”, Earthquake Engineering Reseach Center, University of California, Berkeley, EERC-84/05, Jun. 1984.
    1.3 Bracci, J. M., Reinhorm, A. M. and Mander, J. B., “Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part I – Design and Properties of a One-third Scale Model Structure”, Technical Report NCEER-92-0027, Dec. 1992.
    1.4 NUPEC, “Specification Report of Seismic Shear Wall ISP on NUPEC’s Seismic Ultimate Dynamic Response Test”, NU-SSWISP-D008, Aug. 1994. and NU-SSWISP-D009, Sep. 1994.
    1.5 Park, Y. J. and Ang, A. H.-S., “Mechanistic Seismic Damage Model for Reinforced Concrete,” Journal of Structural Engineering, ASCE, Vol. 111, Apr., pp. 722-739, 1985.
    1.6 日本建築防災協會,既存鉄筋コンクリート造建築物の耐震診斷基準 同解說,日本建築防災協會,東京,1990。
    1.7 蔡益超、邱昌平,現有鋼筋混凝土建築物耐震能力評估手冊,內政部建築研究所,台北,1991。
    1.8 許茂雄、陳俊宏、張文德,「鋼筋混凝土建築結構之非線性耐震分析」,中華民國第十五屆全國力學會議論文集,成功大學,pp. 1567-1575,1991。
    1.9 張文德,「含磚牆鋼筋混凝土建築結構之動態耐震診斷」,碩士論文,國立成功大學建築研究所,台南,1991。
    1.10 ATC, “Seismic Evaluation and Retrofit of Concrete Buildings,” ATC-40 Report, Applied Technology Council, Redwood City, California, SSC 96-01, Nov., 1996.
    1.11 蔡益超、陳清泉,鋼筋混凝土建築物耐震能力評估法及推廣,內政部建築研究所,台北,1999。
    1.12 Sozen, M. A., “The Third Alternative for Proportioning of Earthquake-Resistant Buildings in Reinforced Concrete,” International Workshop on Chi-Chi, Taiwan Earthquake of September 21, 1999, NAPHM, NCREE, pp. 5c-1 – 5c-18, 1999.
    1.13 郭心怡,「學校建築快速耐震診斷」,碩士論文,國立成功大學建築研究所,臺南,2000。
    1.14 日本建築學會,鉄筋コンクリート造校舍の耐震診斷方法および補強方法,日本建築學會,東京,1975。
    1.15 日本建築學會,1985年兵庫縣南部地震既存鉄筋コンクリート造建築物の被害調查報告書 第II編 學校建築,日本建築學會,東京,1997。
    1.16 許茂雄、劉白梅、杜怡萱、張雲妃,「學校建築耐震補強參考案例」,中國土木水利工程學刊,第10卷,第2期,第361-369頁,1998。
    1.17 張嘉祥、陳嘉基、王貞富,「嘉義瑞里地震學校建築震害」,結構工程,13卷3期,第61-80頁,1998。
    1.18 張嘉祥、陳嘉基、呂國維、謝永宏,「九二一集集大地震學校建築震害探討」,土木技術,第27期,第98-116頁,2000。
    1.19 國家地震工程研究中心,中小學校舍耐震評估與補強,國家地震工程研究中心,台北,2000。
    1.20 許茂雄、郭心怡、鄧世雄,「RC學校建築與沿街店鋪住宅快速耐震診斷」,中國土木水利工程學刊,第14卷,第1期,第21-30頁,2002。
    2.1 許茂雄、廖文義、杜怡萱、許士昱,「三分之一縮尺二層樓RC校舍模型振動台試驗」,國家地震工程研究中心報告,NCREE-02-001,台北,2002。
    2.2 Nilson, A. H., Design of Prestressed Concrete, John Wiley and Sons, Inc., New York, 1987.
    3.1 邱瑜燕,「結構強震數據之系統識別與應用研究」,博士論文,國立成功大學建築研究所,台南,2002。
    3.2 Newmark, N. M., & Hall, W. J., Earthquake Spectra and Design, Engineering Monographs on Earthquake Criteria, Structure Design, and String Motion Records, EERI, 1982.
    3.3 日本建築防災協會,震災建築物等の被災度判定基準および復旧技術指針(鉄筋コンクリート造編),日本建築防災協會,東京,第11-37頁,1991。
    4.1 張旭福,「鋼筋混凝土短柱補強措施之定量研究」,碩士論文,國立成功大學建築研究所,台南,1993。
    4.2 Hsu, C. T., “Analysis and Design of Square and Rectangular Columns by Equation of Failure Surface,” ACI Structural Journal, Vol. 85, No. 2, Mar.-Apr., pp.167-179, 1988.
    4.3 周大雅,「既有RC學校建築滿足功能要求之耐震補強」,碩士論文,國立成功大學建築研究所,台南,2001。
    4.4 Elfren, L., Karlsson, I., & Losberg, A., “Torsion–Bending -Shear Interaction for Concrete Beams,” Proceedings of ASCE, Journal of Structural Division, Vol. 100, Aug., pp.1657-1676, 1974.
    4.5 Sheu, M. S., “A Gird Model for Prediction of Monotonic and Hysteretic Behavior of Reinforced Concrete Slab – Column Connections Transferring Moments,” Ph. D. Dissertation, University of Washington, Seattle, Washington, 1976.
    4.6 ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02), American Concrete Institute, Farmington Hills, 2002.
    4.7 賴慶鴻,「鋼筋混凝土剪力牆強度與剛度之試驗與分析」,碩士論文,國立成功大學建築研究所,臺南,1999。
    4.8 陳奕信,「含磚牆RC建築結構之耐震診斷」,博士論文,國立成功大學建築研究所,臺南,2003。
    4.9 Ahmad, S. H. and Shah, S. P., “Behavior of Hoop Confined Concrete Under High Strain Rates”, ACI Journal, Vol. 82, No. 4-6, Sep.-Oct., pp.634-647, 1985.
    4.10 Park, R. and Paulay, P., Reinforced Concrete Structure, 東南書局, 1987。
    5.1 Takeda, T., M. A. Sozen, and N. N. Nielsen, “Reinforced Concrete Response to Simulated Earthquakes,” Journal of the Structural Division, ASCE, Vol. 96, No. ST12, pp.2557-73, 1970.
    5.2 Chung, Y. S., C. Meyer, and M. Shinozuka, “Modeling of Concrete Damage,” ACI Structural Journal, Vol. 86, No. 3, May-June, pp.259-271, 1989.
    5.3 梅村恆、境有紀、南忠夫、壁谷澤寿海,「繰り返しによる耐力低下を考慮した鉄筋コンクリート部材の復元力特性のモデル化」,コンクリート工学年次論文報告集,Vol. 20,No. 3,pp.1015-1020,1998。
    5.4 日本建築學會,「簡易耐震評估及殘餘耐震性能」,建築物耐震評估及補強研討會資料集,台北,pp.3-1 - 3-16,1999。
    5.5 魚本健人、矢島哲司、本鄉和德,「繰り返し曲げを受けるRC梁の消費エネルギーによる破壊特性評価」,土木學會論文集,Vol. 18,No. 460,pp.85-91,1993。
    5.6 矢島哲司、本鄉和德、魚本健人,「繰返し載荷されたRC梁の累積損傷および破壊特性評価」,土木學會論文集,Vol. 23,No. 490,pp.31-39,1994。
    5.7 Elfren, L., Karlsson, I., & Losberg, A., “Torsion–Bending -Shear Interaction for Concrete Beams,” Proceedings of ASCE, Journal of Structural Division, Vol. 100, Aug., pp.1657-1676, 1974.
    6.1 內政部營建署建築研究所編輯委員會,建築物耐震設計規範及解說,營建雜誌社,台北,1999。
    6.2 Chopra, A. K., Dynamics of Structures-Theory and Applications to Earthquake Engineering, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1995.
    6.3 Kawashima, K. & Aizawa, K., “Modification of Earthquake Response Spectra with Respect to Damping Ratio”, Proceedings of the third U.S. National Conference on Earthquake Engineering, South Carolina, pp.1107-1116, 1986.

    下載圖示 校內:立即公開
    校外:2004-07-26公開
    QR CODE