簡易檢索 / 詳目顯示

研究生: 邱忠賢
Chiu, Jhong-Sian
論文名稱: 奈微米陣列結構於太陽能選擇吸收器之分析
Analysis of selective solar absorber with nano/micro structure arrays
指導教授: 楊文彬
Young, Wen-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 94
中文關鍵詞: 太陽能吸收器光子晶體奈微米結構
外文關鍵詞: solar absorber, photonics, nano/micro structure, dish concentrating solar power
相關次數: 點閱:89下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來永續發展漸漸受到重視以及抑制溫室氣體排放,國際間均以推廣再生能源設置作為主要的因應策略之一,利用太陽能集熱器收集太陽能的能源產生熱能便是一種方法。根據普朗克熱輻射定律,在紅外線頻譜區要有低吸收率,以避免吸收輻射能在提高溫度後,又將熱能發散出去,這種特殊的方法稱之為選擇性吸收,太陽能吸收器須在高溫下應用,吸收層在太陽能頻譜波段需要有高平均吸收率(α ̅),在紅外線頻譜波段需擁有低熱發散率(ε ̅)。
    太陽能選擇性吸收器的種類其實主要有六種,本文以耐高溫(>800℃)之光子晶體結構作為研究方向,並以熔點高的鎢做為研究材料。首先探討光子晶體之結構變因,分別有週期(L)、開孔大小(A)以及深度(d)對於其反射率曲線之交互影響,進而提出一套設計的流程。有了以上變因之影響結果,比較單一週期奈米結構以及具兩種週期圖形所複合之奈米結構,其中具兩種週期圖形所複合之奈米結構包含矩形與方形複合之結構以及大小方形複合之結構,經熱效益係數(〖η_FOM^*〗_)分析後,以大小方形複合之結構擁有較寬的高吸收區間,得到方形之複合結構較矩形複合結構佳,為本文比較模型中之最佳模型。隨後利用上述之最佳結構,探討在光子晶體結構表面沉積抗反射層對於其反射率曲線之影響,得到具抗反射層之光子晶體結構能夠得到更高的吸收率,在熱效益係數分析上也有明顯的提高。
    雖然奈米結構於吸收波長之選擇性表現優異但也伴隨著製作成本高昂,本文分析透過聚熱係數提高來減少發散率對於集熱系統之影響,發現在聚熱係數達1000以上且操作溫度在800℃時,儘管是無選擇性吸收的黑體,其熱效益係數仍然有0.9165的高效率表現,故在本文後段嘗試利用雷射雕刻方法製作出具高吸收率之微米結構,期望達到成本與效率間的平衡。

    Analysis of the solar absorber with photonics as the heat absorbing surfaces operated at a high-temperature (>800℃) was performed in this study. Numerical calculations based on rigorous coupled-wave analysis were performed to design the nano structure with better solar spectral selectivity. The effect of nano geometry of the photonics on the selectivity of the absorber was investigated first, including period (L), aperture (A) and depth (d). A design algorithm of nano structures on photonics heat absorbing surface was summarized. Based on the results, a design of photonics with combined large and small squares pattern was proposed to have excellent absorptivity. Integration on the photonics of an anti-reflection coating (ARC) using aluminum oxide (Al2O3) was also studied. It was shown that, under a specific thickness of ARC, the absorptivity can approved. With the discussion of the effect of concentration coefficient on the energy absorption efficiency, it was concluded that a micro structured surface without an ideal cut-off wavelength, still has conversion rate over 85% under the design with a high concentrate coefficient.

    中文摘要 I Abstract III 致謝 XXIII 目錄 XXV 表目錄 XXVIII 圖目錄 XXIX 第一章、緒論 1 1-1 前言 1 1-2 研究目的 2 1-3 研究方法 3 1-4 文獻回顧 4 1-4-1選擇性吸膜種類 4 1-4-2光子晶體 6 第二章、理論原理 13 2-1 前言 13 2-2 嚴格耦合波理論 14 2-3 反射率與穿透率計算 19 2-3-1菲涅爾方程式(Fresnel’s Equation) 19 2-3-2抗反射層 21 2-4 電磁波輻射理論 24 2-4-1黑體輻射 24 2-4-2太陽輻射 26 2-5 聚熱係數 29 2-6 熱效益分析 33 2-7 結論 38 第三章、模擬介紹 39 3-1 RCWA模擬介紹 39 3-1-1材料設定 39 3-1-2結構設定 39 3-1-3其他參數設定 42 第四章、數值結果與討論 43 4-1 程式驗證 43 4-1-1方孔結構驗證 43 4-1-2圓孔結構驗證 44 4-2 光子晶體之結構 44 4-2-1結構變因探討 45 深度(d) 45 開孔大小(A) 53 週期(L) 58 4-2-2設計流程 60 4-3 奈米結構 63 4-3-1方孔結構與圓孔結構選擇 63 4-3-2奈米結構設計比較 65 4-3-3具抗反射層之結構 75 4-4 微米結構 83 4-4-1前言 83 4-4-2 實驗模型 84 4-4-3實驗結果 85 4-4-4微米/奈米結構效益比較 87 第五章、結論 89 參考文獻 92

    [1] A. Lenert, V. Rinnerbauer, D. M. Bierman, Y. Nam, I. Celanovic, M. Soljacic, et al., "2D Photonic-crystals for high spectral conversion efficiency in solar thermophotovoltaics," in Micro Electro Mechanical Systems (MEMS), 2014 IEEE 27th International Conference on, 2014, pp. 576-579.
    [2] P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, et al., "Design and global optimization of high-efficiency thermophotovoltaic systems," Optics express, vol. 18, pp. A314-A334, 2010.
    [3] P. Bermel., J. Lee., J. D. Joannopoulos., I. Celanovic., and M. Soljaˇcie., "Chapter 7 Selective Solar Absorbers," Annual Review of Heat Transfer, vol. 15, pp. 231-254, 2012.
    [4] J. Moon, D. Lu, B. VanSaders, T. K. Kim, S. D. Kong, S. Jin, et al., "High performance multi-scaled nanostructured spectrally selective coating for concentrating solar power," Nano Energy, vol. 8, pp. 238-246, 2014.
    [5] F. Cao, K. McEnaney, G. Chen, and Z. Ren, "A review of cermet-based spectrally selective solar absorbers," Energy & Environmental Science, vol. 7, pp. 1615-1627, 2014.
    [6] E. Elsarrag, H. Pernau, J. Heuer, N. Roshan, Y. Alhorr, and K. Bartholomé, "Spectrum splitting for efficient utilization of solar radiation: a novel photovoltaic–thermoelectric power generation system," Renewables: Wind, Water, and Solar, vol. 2, pp. 1-11, 2015.
    [7] A. Sakurai, H. Tanikawa, and M. Yamada, "Computational design for a wide-angle cermet-based solar selective absorber for high temperature applications," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 132, pp. 80-89, 2014.
    [8] M. Kussmaul, M. J. Mirtich, and A. Curren, "Ion beam treatment of potential space materials at the NASA Lewis Research Center," Surf. Coat. Technol., vol. 51, pp. 299–306, 1992.
    [9] C. M. Lampert, "Heat mirror coatings for energy conserving windows," Solar Energy Materials, vol. 6, pp. 1-41, 1981.
    [10] A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," Journal of Modern Optics, vol. 47, pp. 2399-2419, 2000.
    [11] Y. B. Chen and Z. M. Zhang, "Design of tungsten complex gratings for thermophotovoltaic radiators," Optics Communications, vol. 269, pp. 411-417, 2007.
    [12] H. Sai, H. Yugami, Y. Kanamori, and K. Hane, "Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion," Solar Energy Materials and Solar Cells, vol. 79, pp. 35-49, 2003.
    [13] H. Sai, Y. Kanamori, and H. Yugami, "High-temperature resistive surface grating for spectral control of thermal radiation," Applied Physics Letters, vol. 82, p. 1685, 2003.
    [14] H. Sai and H. Yugami, "Thermophotovoltaic generation with selective radiators based on tungsten surface gratings," Applied Physics Letters, vol. 85, p. 3399, 2004.
    [15] K. A. Arpin, M. D. Losego, and P. V. Braun, "Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability," Chemistry of Materials, vol. 23, pp. 4783-4788, 2011.
    [16] P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, et al., "Large‐Scale Nanophotonic Solar Selective Absorbers for High‐Efficiency Solar Thermal Energy Conversion," Advanced Materials, vol. 27, pp. 4585-4591, 2015.
    [17] D. Jiang, W. Yang, and A. Tang, "A refractory selective solar absorber for high performance thermochemical steam reforming," Applied Energy, vol. 170, pp. 286-292, 2016.
    [18] M. Araghchini, Y. X. Yeng, N. Jovanovic, P. Bermel, L. A. Kolodziejski, M. Soljacic, et al., "Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications," Journal of Vacuum Science & Technology B, vol. 29, p. 061402, 2011.
    [19] V. Rinnerbauer, S. Ndao, Y. Xiang Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, et al., "Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters," Journal of Vacuum Science & Technology B, vol. 31, p. 011802, 2013.
    [20] V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, et al., "Recent developments in high-temperature photonic crystals for energy conversion," Energy & Environmental Science, vol. 5, pp. 8815-8823, 2012.
    [21] J. Chou, Y. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, et al., "Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications," Optics express, vol. 22, p. A144, 2014.
    [22] V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, et al., "High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals," Optics express, vol. 21, pp. 11482-11491, 2013.
    [23] V. Rinnerbauer, E. Lausecker, F. Schäffler, P. Reininger, G. Strasser, R. D. Geil, et al., "Nanoimprinted superlattice metallic photonic crystal as ultraselective solar absorber," Optica, vol. 2, pp. 743-746, 2015/08/20 2015.
    [24] L. Li, "Use of Fourier series in the analysis of discontinuous periodic structures," JOSA A, vol. 13, pp. 1870-1876, 1996.
    [25] L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," JOSA A, vol. 14, pp. 2758-2767, 1997.
    [26] P. Lalanne and G. M. Morris, "Highly improved convergence of the coupled-wave method for TM polarization," JOSA A, vol. 13, pp. 779-784, 1996.
    [27] P. Lalanne, "Improved formulation of the coupled-wave method for two-dimensional gratings," JOSA A, vol. 14, pp. 1592-1598, 1997.
    [28] J. J. Hench and Z. STRAKOŠ, "The RCWA method-a case study with open questions and perspectives of algebraic computations," Electronic Transactions on Numerical Analysis, vol. 31, pp. 331-357, 2008.
    [29] L. Li, "Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors," Journal of Optics A: Pure and Applied Optics, vol. 5, p. 345, 2003.
    [30] W. H. Southwell, "Gradient-index antireflection coatings," Optics letters, vol. 8, pp. 584-586, 1983.
    [31] ASTM. Reference Solar Spectral Irradiance: Air Mass 1.5 Spectra. Available: http://rredc.nrel.gov/solar/spectra/am1.5/
    [32] X. Xu, K. Vignarooban, B. Xu, K. Hsu, and A. Kannan, "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, vol. 53, pp. 1106-1131, 2016.
    [33] L. Z. ÜÖè and X. Diao, "New criterion for optimization of solar selective absorber coatings," Chinese Optics Letters, 2013.
    [34] Refractive.INDEX. Refractive index database. Available: http://refractiveindex.info/

    下載圖示 校內:2021-07-01公開
    校外:2021-07-01公開
    QR CODE