簡易檢索 / 詳目顯示

研究生: 林坤賢
Lin, Kuen-Shian
論文名稱: 以電紡絲製備聚苯噁唑纖維
Preparation of polybenzoxazole fibers via electrospinning
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 147
中文關鍵詞: 雙折射率差高速攝影機聚苯噁唑纖維電紡絲高性能纖維
外文關鍵詞: functional fiber, electrospinning, PBO fiber, birefringence, high speed camera
相關次數: 點閱:96下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   聚苯噁唑(PBO)纖維可藉由前驅物聚羥醯胺(PHA)溶入溶劑後,經電紡絲及高溫環化製備得到,所得之纖維具有優越的機械性質及纖維配向性。不過使用之溶劑THF具有高度揮發性,常導致Taylor cone在形成前即生成阻塞物於針端。因此藉由飽和的溶劑蒸氣以氮氣引導至針端避免阻塞的問題,使過程能連續運作。

      本研究中將PHA溶入THF/DMAc之混合溶劑中,藉由改變THF與DMAc之比例可得不同形態的收集物。此外溶液濃度、溶劑性質、氮氣流量及環化條件均會影響纖維之成型及形態上的變化。

      藉由高速攝影機的拍攝,可以觀察到cone及液柱運動的過程。其中在低濃度時,cone會以高頻率上下振動並形成droplet快速滴落。高濃度時,液柱在bending instability過程中以折曲、螺旋狀且成圈之方式展開,同時發現液柱會有糾結的現象發生。

      以THF/DMAc=9/1之co-solvent系統中,溶液濃度20wt%,可製備出纖維直徑719 209nm之PHA纖維,經高溫環化後可得643 212nm之PBO纖維。

      雙針電紡絲實驗中,針與針間的距離、針到收集網的距離、電壓均會影響實驗。其中以針距之影響最為重要,由於電場受彼此斥力作用,使得液柱產生偏移,發現各溶液系統針距越小時,液柱偏移的角度越大。

     Polybenzoxazole(PBO) fibers with submicron-scale diameter have been fabricated from the PBO precursor polyhydroxyamide(PHA) by using electrospinning and thermal cyclization processes. The resulting fibers have exceptional mechanical properties and birefringent. In systems a common solvent we used tetrahydrofuran(THF), which evaporates rapidly at room temperature, the solution droplet at the tip dries out very quickly during the formation of the Taylor cone, thereby blocking the tip and making the collection process discontinuous. Several alternatives have been proposed to overcome this problem, we used nitrogen gas to carry saturated gas surrounding the Taylor cone against volatile solvent evaporates immediately. This method can stabilize the system and make process continuous.

     In this study, PHA was dissolved in the mixture of dimethylacetamide (DMAc) and THF. The results indicate that the morphology of the fibers are dependent on the ratio of DMAc and THF mixture. Besides the solution concentration, solvent properties, and nitrogen gas flow rate, and even the condition of thermal cyclization also can affect the formation and morphology of the fibers.

     Using high speed videography , we can observe the rapid motion of cone and jet splaying. In low solution concentration, the cone vibrated up and down very quickly, and produced spheres. In high solution concentration, the liquid jet followed a bending, winding, spiraling and looping path,and the loops formed immediately on the jet.

     The average diameter of electrospun fibers was 719 209nm from a 20wt% solution of PHA in THF/DMAc=9/1. After thermal cyclization processes, PBO fibers can be fabricated and the fiber diameter is 643 212nm.

     In multi-jet electrospinning, the experiment results were dependent on the distance between needles, the distance between needle and collector and the applied voltage. Due to the electric field effect, it can be observed that the deflection of jet increases with decreasing the distance between needles.

    中文摘要…………………………………………………………………i 英文摘要…………………………………………………………………ii 致謝………………………………………………………………………iv 目錄………………………………………………………………………v 表目錄……………………………………………………………………viii 圖目錄……………………………………………………………………ix 符號………………………………………………………………………xiii 一、前言…………………………………………………………………1 二、簡介…………………………………………………………………2 2.1電紡絲之模式………………………………………………………2 2.2電紡絲實驗流程……………………………………………………3 2.3雙針電紡絲實驗流程………………………………………………4 三、文獻回顧……………………………………………………………12 3.1電紡絲過程…………………………………………………………12 3.2影響電紡絲因素……………………………………………………13 3.3電紡絲纖維之應用…………………………………………………17 3.3.1纖維的排列………………………………………………………17 3.3.2多針電紡絲之應用………………………………………………18 3.3.3高性能纖維………………………………………………………18 四、理論…………………………………………………………………38 4.1繞射及干涉原理……………………………………………………38 4.1.1單狹縫繞射原理…………………………………………………38 4.1.2雙狹縫及多狹縫干涉與繞射原理………………………………40 4.2雙折射原理…………………………………………………………42 4.2.1雙折射率…………………………………………………………42 4.2.2量取纖維之雙折射率差…………………………………………43 4.3WAXD…………………………………………………………………44 五、實驗…………………………………………………………………50 5.1 實驗藥品……………………………………………………………50 5.2 實驗材料及儀器……………………………………………………52 5.2.1量測溶液性質……………………………………………………52 5.2.2電紡絲儀器及材料………………………………………………52 5.2.3光學儀器…………………………………………………………53 5.2.4性質分析及其他儀器……………………………………………54 5.3 實驗…………………………………………………………………56 5.3.1溶液製備…………………………………………………………56 5.3.1.1亂排聚苯乙烯溶液……………………………………………56 5.3.1.2聚丙烯腈溶液…………………………………………………56 5.3.1.3聚羥醯胺溶液…………………………………………………57 5.3.2電紡絲實驗流程…………………………………………………58 5.3.3儀器操作步驟……………………………………………………59 5.3.3.1 CCD觀察cone高度及液柱長度………………………………59 5.3.3.2雷射繞射量取液柱直徑………………………………………60 5.3.3.3高速攝影機觀察液注末端變化………………………………62 5.3.3.4氮氣流量校正與調整…………………………………………63 5.3.3.5單一方向纖維之收集…………………………………………64 5.3.4實驗步驟…………………………………………………………64 5.3.4.1雙針電紡絲……………………………………………………64 5.3.4.2聚苯噁唑纖維之合成…………………………………………65 5.3.5性質測試與分析…………………………………………………66 5.3.5.1傅立業紅外線光譜儀之分析…………………………………66 5.3.5.2 廣角X光繞射分析儀之分析…………………………………66 5.3.5.3偏光顯微鏡及雙折射率差量取………………………………67 5.3.5.4掃描式顯微鏡之分析…………………………………………68 六、結果與討論 ………………………………………………………74 6.1雙針電紡絲…………………………………………………………74 6.1.1研究動機…………………………………………………………74 6.1.2操作條件…………………………………………………………74 6.1.2.1針距對雙針電紡絲之影響……………………………………74 6.1.2.2工作距離對雙針電紡絲之影響………………………………76 6.2聚苯噁唑纖維之製備………………………………………………93 6.2.1溶液配置之討論…………………………………………………93 6.2.2溶液性質與收集物型態之討論…………………………………93 6.2.2.1以DMAc為溶劑之系統…………………………………………93 6.2.2.2以THF/DMAc co-solvent為溶劑之系統………………………94 6.2.3雷射量取液柱直徑………………………………………………96 6.2.4聚羥醯胺纖維環化反應之討論…………………………………96 6.2.4.1前驅物聚羥醯胺(PHA)纖維之鑑定……………………………96 6.2.4.2聚苯噁唑(PBO)纖維之鑑定……………………………………97 6.3以高速攝影機觀察之結果…………………………………………123 6.3.1收集物為droplet或sphere之splaying 區域觀察……………123 6.3.2收集物為fiber之splaying 區域觀察…………………………123 七、結論 ………………………………………………………………128 八、參考文獻 …………………………………………………………130 附錄A……………………………………………………………………135 附錄B……………………………………………………………………135 自述………………………………………………………………………147

    1.X. Lord Rayleigh, On the equilibrium of liquid conducting masses charged with electricity, London, Edinburgh, and Dublin Phil. Mag. 44, 184, 6, (1882)。
    2.J. Zeleny, J. Phys Rev. 3, 69, (1914)。
    3.J. Zeleny, Instability of electrified liquid surfaces, Phys. Rev. 10, 1 (1917)。
    4.A. Formhals, Process and apparatus for preparing artificial threads, US Patent 1, 975, 504, (1934)。
    5.G. I. Taylor, Disintegration of water drops in an electric field, Proc. R. Soc. London, Ser. A 280, 383 (1964)。
    6.G. I. Taylor, The stability of horizontal fluid interface in a vertical electric field, J. Fluid Mech. 22, 1 (1965)。
    7.G. I. Taylor, The circulation produced in a drop by an electric field, Proc. R. Soc. London, Ser. A 291, 145 (1966)。
    8.G. I. Taylor, Electrically driven jets, Proc. R. Soc. London, Ser. A 313, 453 (1969)。
    9.L. Larrondo, R. St. J. Manley, J. Polym. Sci., B, Polym. Phys. Ed. 19, 909 (1981)。
    10.L. Larrondo, R. St. J. Manley, J. Polym. Sci., B, Polym. Phys. Ed. 19, 921 (1981)。
    11.L. Larrondo, R. St. J. Manley, J. Polym. Sci., B, Polym. Phys. Ed. 19, 933 (1981)。
    12.D. H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrspinning, Nanotechnology 7, 216 (1996)。
    13.D. H. Reneker, J. Doshi, Electrospinning process and applications of electrospun, J. electrostatics 35, 151 (1995)。
    14.H. Xu, D. Galehouse, D. H. Reneker, Study of the relationship between jet diameter and interference color during electrospinning, Polymer Materials: Science and Engineering 88, 37 (2003)。
    15.P. K. Baumgarten, Electrostatics spinning of acrylic microfiber, J. Colloid Interface Sci. 36, 1, 71 (1971)。
    16.D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning, J. Appl. Phys. 87, 4531 (2000)。
    17.A. L. Yarin, S. Koombhongse, D. H. Reneker, Bending instability in electrospinning of nanofibers, J. Appl. Phys. 89, 3018 (2001)。
    18.A. L. Yarin, S. Koombhongse, D. H. Reneker, Taylor cone and jetting from liquid droplets in electrospinning of nanofibers, J. Appl. Phys. 90, 4836 (2001)。
    19.M. M. Hohman, M. Shin, G. Rutledge, M. P. Brenner, Electrospinning and electrically forced jets. I. stability, Phys. Fluids 13, 2201 (2001)。
    20.S. Koombhongse, W. Liu, D. H. Reneker, Flat polymer ribbons and other shapes by electrospinning, J. Polym. Sci., B, Polym. Phys. Ed. 39, 2598 (2001)。
    21.A. Koski, K. Yim, S. Shivkumar, Effect of molecular weight on fibrous PVA produced by electrospinning, Material Letters 58, 493 (2004)。
    22.H. Fong, I. Chun, D. H. Reneker, Beaded nanofibers formed during electrospinning, Polymer 40, 4585 (1999)。
    23.T. Lin, Hongxia Wang, Huimin Wang, Xungai Wang, The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene, Nanotechnology 15, 1375 (2004)。
    24.X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer 43, 4403 (2002)。
    25.H. Liu, Y.-L. Hsieh, Ultrafine fibers cellulose membrances from electrospinning of cellulose acetate, J. Polym. Sci., B, Polym. Phys. Ed. 40, 2119 (2002)。
    26.K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, S. W. Choi, Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends. J. Polym. Sci., B, Polym. Phys. Ed. 41, 1256 (2003)。
    27.K. H. Lee, H. Y. Kim, Y. M. LA, D. R. Lee, N. H. Sung, Influence of a mixing solvent with tetrahydrofuran and n,n-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats. J. Polym. Sci., B, Polym. Phys. Ed. 40, 2259 (2002)。
    28.J. M. Deitzel, J. Kleinmeyer, D. Harris, N. C. Beck Tan, The effect of processing variable on the morphology of electrospun nanofibers and textiles, Polymer 42 261 (2001)。
    29.D. Li, Y. Xia, Fabrication of titania nanofibers by electrospinning, Nano Letters 3, 555 (2003)。
    30.S. Magelski, J. S. Stephens, D. B. Chase, J. F. Rabolt, Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35, 8456 (2002) 。
    31.C. J. Buchko, Loui C. Chen, Yu Shen, David C. Martin, Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40, 7397 (1999)。
    32.P. K. Baumgarten, Electrostatic spinning of acrylic microfibers, J. Colloid Interface Sci. 36, 71 (1971)。
    33.L. Wannatong, A. Sirivat, P. Supaphol, Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene, Polym Int. 53, 1851 (2004)。
    34.S. Koombhongse, W. Liu, D. H. Reneker, Flat polymer ribbons and other shapes by electrospinning, J. Polym. Sci., B, Polym. Phys. Ed. 39, 2598 (2001)。
    35.M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, J. H. Wendorff, Nanostructured fiber via electrospinning, Adv. Mater. 13, 70 (2001)。
    36.C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, J. F. Rabolt, Controlling surface morphology of electrospun polystyrene fibers:effect of humidity and molecular weight in the electrospinning process. Macromolecules 37, 573 (2004)。
    37.G. Larsen, R. Spretz, R. Velarde-Ortiz, Use of coaxial gas jackets to stabilize Taylor Cone of volatile solutions and to induce particle-to-fiber transitions, Adv. Mater. 16, 166 (2004)。
    38.Z. -M. Huang, Y. –Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol. 63, 2223 (2003)。
    39.J. A. Matthews, G. E. Wnek, D. G. Simpson, G. L. Bowlin, Electrospinning of collagen nanofibers, Biomacromolecules 3, 232 (2002)。
    40.A. Theron, E. Zussman, A. L. Yarin, Electrostatics field-assisted alignment of electrospun nanofibres, Nanotechnology 12, 384 (2001)。
    41.E. Zussman, A. Theron, A. L. Yarin, Formation of nanofiber crossbar in electrospinning, Appl. Phys. Lett. 82, 973 (2003)。
    42.R. Inai, M. Kotaki, S. Ramakrishna, Structure and properties of electrospun PLLA single nanofibres, Nanotechnology 16, 208 (2005)。
    43.D. Li, Y. Wang, Y. Xia, Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films, Adv. Mater. 16, 361 (2004)。
    44.D. Li, Y. Wang, Y. Xia, Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays, Nano Letters 3, 1167 (2003)。
    45.B. Ding, E. Kimura, T. Sato, S. Fujita, S. Shiratori, Fabrication of blend biodegrable nanofibrous nonwoven mats via multi-jet electrospinning, Polymer 45, 1895 (2004)。
    46.S. Kidoaki, Il K. Kwon, T. Matsuda, Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning technology, Biomaterials 26, 37 (2005)。
    47.R. Sen, B. Zhao, D. Perea, M. E. Itkis, H. Hu, J. Love, E. Bekyarova, R. C. Haddon, Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning, Nano Letters 4, 459 (2004)。
    48.H. Hou, D. H. Reneker, Carbon nanotubes on carbon nanofibers: A novel structure based on electrospun polymer nanofibers, Adv. Mater. 16, 69 (2004)。
    49.S. J. Krause, T. B. Haddock, D. L. Vezie, P. G. Lenhert, W. –F. Hwang, G. E. Price, Morphology and properties of rigid-rod poly(p-phenylene benzobisoxazole)(PBO) and stiff-chain poly(2,5(6)-benzoxazole)(ABPBO) fibres, Polymer 29, 1354 (1988)。
    50.S. Kumar, T. D. Dang, F. E. Arnold, A. R. Bhattacharyya, B. G. Min, X. Zhang, Synthesis, structure, and properties of PBO/SWNT composites, Macromolecules 35, 9039 (2002)。
    51.Francis A. Jenkins andHarvey E. White (1976). Fundamentals of Optics, Fourth Edition, P316~322。
    52.Serway and Jeweet, Principles of Physics, 3rd Ed.
    53.R. Russo, An alternative method for the determination of the birefringence in stretched polymeric films, Polym. Testing 20, 283 (2001).
    54.林健樺, “以電紡絲製備聚苯乙烯纖維膜”, 成功大學, 民國92年.
    55.洪崇豪, “以電紡絲製備彈性奈米SBS纖維膜”, 成功大學, 民國92年.
    56.黃怡慧, “以電紡絲製備聚羥基丁酸酯纖維”, 成功大學, 民國93年.

    下載圖示 校內:2006-07-15公開
    校外:2006-07-15公開
    QR CODE