| 研究生: |
劉俊延 Liu, Chun-yen |
|---|---|
| 論文名稱: |
過硫酸鹽再生活性碳及氧化甲基第三丁基醚之研究 Simultaneous Regeneration of Activated Carbon and Oxidation of MTBE in Water Using Persulfate |
| 指導教授: |
林財富
Lin, Tsair-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 吸附 、化學氧化再生技術 、甲基第三丁基醚 、過硫酸鹽 |
| 外文關鍵詞: | oxidation/regeneration, adsorption, persulfate, MTBE |
| 相關次數: | 點閱:96 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在受污染場址的各種整治方中,吸附劑透水性處理牆與現地化學氧化是兩種常被探討的整治技術之ㄧ,當共同應用於處理時,可以將污染物濃縮後再由氧化劑進行降解,並再生吸附劑以延長處理年限。此項技術被應用於水處理程序中,但是在收污染場址整治則尚未有相關研究,本研究擬結合此兩種技術,探討處理常於汽油污染場址中發現之污染物甲基第三丁基醚(methyl tert-butyl ether, MTBE)之可行性。研究中利用化學氧化再生技術處理吸附飽和之活性碳,探討活性碳吸附量的改變情形,並分析反應過程中污染物之副產物的生成,期對將來運用於現地處理技術之可行性與作為經濟方面之考量依據。實驗結果顯示,活性碳的氧化劑需求量約為2.25 g-oxidant / g-G340,且MTBE的降解動力可以假ㄧ階反應動力進行描述,其所求得之反應速率常數約為7.9×10-6 s-1 (pH = 3~3.5,25℃)。MTBE之副產物分析結果發現,反應初期的副產物主要為TBA,其次為TBF、acetone,隨著反應時間增長,TBA與TBF則逐漸降解為acetone。此外,氧化再生實驗結果發現,經氧化吸附飽和之活性碳後,其飽和吸附量仍有90 %以上,顯示若將來欲以過硫酸鹽進行化學氧化再生技術之運用時,再生吸附劑 (活性碳) 所須支出之成本將可大為降低,即活性碳之再生效率與氧化劑的選用等實用性與經濟性的考量方面,本研究方可作為整治技術之參考依據。
The gasoline additive, methyl tert-butyl ether (MTBE), could be found in many underground environment recently. In many of the remediation techniques, adsorbent-based permeable reactive barrier (PRB) and in-situ chemical oxidation (ISCO) are widely investigated. When PRB and ISCO were employed simultaneously, the oxidant could degrade the adsorbed pollutants more efficiently due to the concentration nature of the adsorption process. In addition, the oxidant could also regenerate the adsorbent to extend the lifespan of the adsorbent. Therefore, this study attempted to apply the chemical oxidative regenerated technology to treat the pollutant (MTBE) and to evaluate the practicability of combining in-situ oxidation and adsorption processes for the treatment of MTBE. In this study, persulfate and a commercially available activated carbon (AC) were used as an oxidant and an adsorbent, respectively. After MTBE was adsorbed to AC, the adsorption capacity of AC and the variation of byproducts of MTBE were studied during oxidation/regeneration and re-adsorption process. The experimental results show that the concentration of persulfate has to exceed a persulfate-to-AC ratio of 2.25 g/g to produce an efficient oxidation to remove the sorbed MTBE. The batch experiment results indicate that a pseudo-first-order reaction model can adequately describe the MTBE oxidation kinetics by persulfate. Besides, the major byproducts found in the oxidation process were tert-butyl alcohol (TBA), tert-butyl formate (TBF) and acetone. As the reaction time increased, the concentrations of the byproducts increased accordingly.
Alexander A., and Eli K., 2001. Solubilities and vapour pressures of saturated aqueous solutions of sodium peroxydisulfate and potassium peroxydisulfate. J. Chemical Thermodynamics, 33, 61-69.
Amarante D., 2000. Applying in situ chemical oxidation. Pollution Engineering, 32, 40-42.
Ashcroft, C.T., Borup, M.B., 1992. Chemical regeneration of granular activated carbon with hydrogen peroxide. In: Proceedings of the Am. Water Works Assoc., Annual Conference, Vancouver, BC, pp. 191–200.
Barreto, R.D., Gray, K.A., Anders, K., 1995. Photocatalytic degradation of methyl tert-butyl ether in TiO2 slurries: a proposed reaction scheme. Water Res. 29, 1243-1248.
Behrman E.J., and Dean D.H., 1999. Sodium peroxydisulfate is a stable and cheap substitute for ammonium peroxydisulfate (Persulfate) in polyacrylamide gel electrophoresis. J. Chromatography. B, 723, 325-326.
Berlin Ad. A., 1986. Kinetics of radical-chain decomposition of persulfate in aqueous solutions of organic compounds. Kinetics and Catalysis, 27, 34-39.
Brown R.A., Robinson D., Skladany G.., and Loeper J., 2003. Response to naturally occurring organic material: Permanganate versus persulfate Proceedings of ConSoil, 2003-8th International FZK/TNO Conference on Contaminated Soil, 1692-1698, May 12-16, Gent, Belgium.
Charlotte Rosendahl Pedersen and Carla Essenberg, Feb. 26, 2007. University of Minnesota. http://umbbd.msi.umn.edu/mtb/mtb_map.html
Clarke N. and Knowles G., 1982. High purity water using H2O2 and UV radiation. Effluent and Water Treatment Journal, 22, 335-341.
Davidson, J.M. and Creek, D.N., 2000. “Using the gasoline additive MTBE in forensic environmental investigations”, Environmental Foresics, 1, 31-36.
Dogliotti L. and Hayon E., 1967. Flash photolysis of persulfate ions in aqueous solutions. Study of the sulfate and ozonide redical anions. J. Physical Chemistry, 71(8), 2511-2516.
Edwards J.O., 1980. Thermal decomposition of peroxodisulphate ions. Reviews in Inorganic Chemistry, 2(3), 179-206.
Elovitz, M.S.; von Gunten, U., 1999. "Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept" Ozone Sci. Eng. pp. 239-260.
Environmental Security Technology Certification Program (ESTCP), 1999. Technology Status Review: In-Situ Oxidation,
Http://www.estcp.gov/.
Gareth J.P. and Andrew A.C., 1996. Polymer communications: sonochemical acceleration of persulfate decomposition. Polymer, 37(17), 3971-3973.
Goulden P.D. and Anthony D.H.J., 1978. Kinetics of uncatalyzed peroxydisulfate oxidation of organic material in fresh water. Analytical Chemistry, 50(7), 953-958.
Hayon E., and McGarvey J.J., 1967. Flash photolysis in the vacuum ultraviolet region of SO42-, CO32- and OH- ions in aqueous solutions. J. Physical Chemistry, 71, 1472-1477.
Hayon E., Treinin A., and Wilf A., 1972. Electron spectra, photochemistry and qutooxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. J. America Chemistry Society, 94, 47-57.
Hoag, G.E., Chheda, V., Woody, B.A., and Dobbs, G.M., 2000. Chemical oxidation of volatile organic compounds. U.S. Patent no.6, 019, 548.
House D.A., 1962. Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews, 62, 185-203.
Huang, K.C., Couttenye, R.A., Hoag, G.E., 2002. Kinetics of Heat-Assisted Persulfate Oxidation of Methyl tert-Butyl Ether (MTBE), Chemoshpere, 49, 413-420.
Huling, S.G., Arnold, R.G., Sierka, R.A., Jones, P.K., Fine, D., 2000a. Contaminant adsorption and oxidation via Fenton reaction. Journal of Environmental Engeering-ASCE 126, 595-600.
Huling S.G., Jones P.K., Ela W.P. and Arnold R.G., 2005. Fenton-driven chemical regeneration of MTBE-spent GAC, Water Research 39 (10), pp. 2145–2153.
Hung, H.W., and Lin, T.F. (2006a) Adsorption of MTBE from contaminated water by carbonaceous resins and mordenite zeolite, Journal of Hazardous Materials, 135 (1-3), 210-217.
International Technology and Regulatory Cooperation (ITRC), 2002. In situ chemical oxidation. ITRC Training Course for SRP, October. http://www.itrcwe.org/.
Jans, U.; Hoigné, J., 1998. "Activated carbon and carbon black catalyzed transformation of aqueous ozone into OH-radicals" Ozone Sci. Eng. pp. 67-87.
Johnson, R.L., Lowes, F.J., Smith, R.M. 1964. Evaluation of the Use of Activated Carbons and Chemical Regenerants in Treatment of Waste Water. US Public Health Service Publication No. 999-WP-13, 48pp.
Karanfil, T., Kilduff, J.E., 1999. Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 1.Priority pollutants. Environ. Sci. Technol. 33(18), 3217-3224.
Kelly K.L., Marley, M.C., Sperry, K.L., 2002. In situ chemical oxidation on MTBE. Proceedings of 2002 Joint CSCE/EWRI of ASCE International Conference on Environmental Engineering, July 21-24, Niagara Falls, Ontario, Canada.
Kinoshita, K., 1988. Carbon: Electrochemical and Physicochemical Properties. Wiley-Interscience Publication, Wiley, New York, 533.
Kislenko V.N., Berlin A.A., and Litovchnko N.V., 1995. Kinetics of oxidation of glucose by persulfate ions in the presence of Mn(II) ions. Kinetics and Catalysis, 38(3), 359-364.
Kolthoff I.M. and Miller I.K., 1951. The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. J. American Chemical Society, 73, 3055-3059.
Kommineni, S., Ela, W.P., Arnold, R.G., Huling, S.G., Hester, B.J., Betterton, E.A., 2003. NDMA treatment by sequential GAC adsorption and Fenton-driven destruction. Environmental Engineering Science, 20, 361-373.
Koresh, J., 1982. “Study of Molecular Sieve Carbons: the Langmuir Model in Ultramicroporous Adsorbents”, Journal of Colloid and Interface Science, 88, 398-406.
Leitner N.K. V., Papailhou A.-L., Croue J.-P., Peyrot J. and Dore M., 1994. Oxidation of methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE) by ozone and combined ozone/hydrogen peroxide. Ozone Sci. Eng. 16, 41-54.
Lewis R.W., 2002. Key factor for a successful ISCO application with permanganate. Teleconference of In Situ Treatment of Groundwater Contaminated with Non-Aqueous Phase Liquids, Dec 10-11, Chicago, IL. http://www.clu-in.org/.
Liang C.J., Bruell C.J., Marley M.C., and Sperry K.L., 2003. Thermally activated persulfate oxidation of Trichloroethylene (TCE) and 1,1,1-Trichlorothane (TCA) in aqueous systems and soil slurries. Soil and Sediment Contamination, 12(2), 207-228.
Liang C.J., Bruell C.J., Marley M.C., and Sperry K.L., 2004a. Persulfate oxidation for in situ remediation of TCE. I. Acivated by ferrous ion with and without a persulfate-thiosulfate recox couple. Chemosphere, 55, 1213-1223.
Liang C.J., Bruell C.J., Marley M.C., and Sperry K.L., 2004b. Persulfate oxidation for in situ remediation of TCE. II. Acivated by chelated ferrous ion. Chemosphere, 55, 1225-1233.
Liang C.J., Wang Z.S., Mohanty N., 2006. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 degrees C. Science of the total environment 370 (2-3): 271-277.
Liang C.J., Wang Z.S., Bruell C.J., 2007. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66 (1): 106-113.
Mackay, D.M. and J.A. Cherry, 1989. “Groundwater Contaminant: Pump and Treat Remediation”, Environ. Sci. Technol., 23, 630-636.
Mourand, J.T., Crittenden, J.C., Hand, D.W., Perram, D.L., Notthakun, S., 1995. Regeneration of spent adsorbents using homogeneous advanced oxidation. Water Environment Research, 67, 355-363.
Neta P., Robert E. H., and Alberta B. R., 1988. Rate constants for
reactions of inorganic radical in aqueous solution. J. Physical Chemistry
Reference Data, 17 (3), 1027-1262.
Peter J. Palko, P.E., CHMM, Chuck Elmendorf, Kevin D.Dyson, and EIT (Panther Technologies), 2004. Ex-situ remediation of PCE and TCE in soils using a proprietary, persulfate-based oxidation technology. Http://www.panthertech.com/
Peyton G.R., 1993. The free-radical chemistry of persulfate-based total organic carbon analyzers. Marine Chemistry, 41, 91-103.
Pingnatello, J.J. and B. Xing, 1996. “Mechanism of Slow Sorption of Organic Chemicals to Natural Particles”, Environ. Sci. Technol., Vol. 30, 1-11.
Pugh, J.R., 1999. In situ remediation of soils containing organic
contaminants using the electromigration of peroxysulfate ions. U.S.
Patent 597348.
Richard A.B., David R., George S., Joseph L., 2002. Response to naturally occurring organic material: permanganate versus pesulfate. USEPA, Solid Waste and Emergency Response, EPA 542-N-02-002, 43, 1692-1698.
Riggs J.P. and Rodriguez F., 1967. Polymerization of acrylamide initiated by the persulfate-thiosulfate redox couple. J. polymer science: part A-1, 5, 3167-3181.
Rivera-Utrilla, J.; Sánchez-Polo, M.; Mondaca, M.A.; Zaror, C.A., 2002. "Effect of ozone/activated carbon treatments on genotoxic activity of naphthalenesulphonic acids" J. Chem. Technol. Biotechnol. 883-890.
Ruthven, D.M., 1984. Principles of Adsorption and Adsortion Processes, John Wiley and Sons, New York, N.Y.
Sánchez-Polo, M.; Rivera-Utrilla, J., 2003. "Effect of the ozone-carbon reaction on the catalytic activity of activated carbon during the degradation of 1,3,6-naphthalentrisulphonic acid with ozone" Carbon, 303-307.
Sánchez-Polo, M.; von Gunten, U.; Rivera-Utrilla, J., 2005. "Efficiency of activated carbon to transform ozone into OH radicals: influence of operational parameters" Water Res., 3189-3198.
Siegrist, R.L., Urynowicz, M.A., West, O.R., Crimi, M.L., Lowe, K.S., 2001. Principle and practices of In Situ Chemical Oxidation Using Permanganate. Battelle Press.
Siegrist R.L., 2002. Fundamentals of in situ chemical oxidation (ISCO). Teleconference of In Situ Treatment of Groundwater Contaminated With Non-Aqueous Phase Liquids, Dec 10-11, 2002, Chicago, IL. Http://www.clu-in.org/.
Susan P., and Monice Z.F., 2001. Final report on the safety assessment of
ammonium, potassium, and sodium persulfate. Internation Journal of
Toxicology. 20(3), 7-21.
Tieckelmann, R.H., Thorp, D.S., Gagliardi, C., and Downey, G.D., 1998.
Use of persulfate to destroy haloform. U.S. Patent 5, 849, 985.
Toledo, L.C., Silva, A.C.B., Augusti, R., Lago, R.M., 2003. Application of Fention reagent to regenerate activated carbon saturated with organochloro compounds. Chemosphere (50), 1049-1054.
Von S.C., 1989. The chemical basis of radiation biology. Taylor and Francis, New York, 515.
Wagler J. L. and Malley J. P. Jr., 1994. The removal of methyl tertiary-butyl ether from a model ground water using UV/peroxide oxidation. J. NEWWA. September, 236-260.
Weber, W.J., McGinley, P.M., and L.E. Katz, 1991. “Sorption Phenomena in Subsurface systems:Concepts Models and Effects on Contaminant Fate and Transport”, Water Research, 25, 499-528.
Yao, C.C.D.; Haag, W.R., 1991. "Rate constants for direct reactions of ozone with several drinking water contaminants" Water Res. 761-773.
Yeh C. K. and Novak J. T., 1995. The effect of hydrogen peroxide on the degradation of methyl and ethyl tert-butyl ether in soils. Water Environ. Res. 67, 828-834.
Yu X.Y., Bao Z.C., and John R.B., 2004. Free radical reaction involving
Cl‧, Cl2-‧, and SO4-‧ in the 248 nm photolysis of aqueous solutions
containing S2O82- ad Cl-. J. Physical Chemistry A, 108, 295-308.
方瑋寧,”MTBE好氧分解之可行性研究”,國立中山大學環境工程研究所碩士論文,2002。
林佩雲,”水中常見之陰離子過硫酸鹽熱催化氧化三氯乙烯的影響”,國立成功大學環境工程研究所碩士論文,2005。
黃昆德,”利用高錳酸鉀氧化法處理三氯乙烯污染之地下水”,國立中山大學環境工程研究所碩士論文,2004。
洪旭文,”定量結構活性關係法預測活性碳吸附低濃度揮發性有機物之研究”,國立成功大學環境工程研究所碩士論文,2000。
行政院環境保護署相關資料,汽油添加劑MTBE(甲基第三丁基醚)之環境污染特性,http://www.epa.gov.tw ,2004。