簡易檢索 / 詳目顯示

研究生: 呂志介
Lu, Chih-Chieh
論文名稱: 含固態相變物質複合材料之力學性質
Mechanical properties of composite materials having solid-solid phase-transforming inclusions
指導教授: 王雲哲
Wang, Yun-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 186
中文關鍵詞: 黏彈性力學共振超音波頻譜動剪流變儀複合材料相變材料
外文關鍵詞: Viscoelasticity, resonant ultrasound spectroscopy (RUS), dynamic shear rheometer (DSR), composite materials, phase-transforming materials
相關次數: 點閱:130下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文裡,我們主要採用兩種方式來研究高阻尼高勁度 (HDHS) 的複合材料。一種是利用傳統方法採用複合理論將附高勁度性質的金屬與含高阻尼的高分子材料做結合。另一種則是利用固態-固態相變化材料,如二氧化釩 (VO2) 與鈦酸鋇 (BaTiO3),經過相變溫度時會產生負勁度的想法。在傳統方式方面,我們將高分子材料,如熱熔膠 (HMA) 與 polyamide 塞入中空不銹鋼中形成複合材料。此種材料雖然非為最理想高阻尼高勁度的複合材料,但這種方法因為金屬為基體而能確保此複合材料產生一定的勁度,且其整體消散能力也會有明顯改善。研究發現,少量的高分子加入金屬的複合材料雖然會稍稍減少整體勁度,但將大大增加材料的消散能力。透過共振超音波頻譜實驗(RUS),我們發現扭轉模態的共振頻率不會因為中空洞的大小而有所改變,如體積V=25mm x 25mm x 25mm 的不鏽鋼立方體扭轉模態的共振頻率皆在 57 kHz 左右。複合材料的所增加的高分子材料越多時,材料的消能能力也越好,而且塞polyamide比塞入HMA的消散能力更佳。對於孔洞尺寸 24mm 的不鏽鋼而言,含polyamide的tan delta為3.952x10^{-2}比含HMA的還大,約2.1517x10^{-2}。而在負勁度複合材料方面,我們將相變材料放入高分子材料中。透過動態剪切流變儀 (DSR),我們發現只在某些情況時複合材料在不減少勁度下會增加阻尼,我們推測可能是高分子基體的勁度不夠,以至於無法將相變材料之變化傳送出來。介由動態剪切流變儀,我們發現以 polyamide 為基體,二氧化釩為內含物,依體積百分比 5% 比例混合的複合材料在經過相變溫度附近時 tan delta約增加 0.0264,但其他試體皆沒發現,我們推測內含相變材料的多寡與基體的勁度將決定於是否能觀察到相變現象。

    In this research, two approaches are adopted to study high damping and high stiffness (HDHS) composites. One utilizes the conventional method in the viscoelastic composite theory to combine metallic materials with polymer, and the other adopts the negative-stiffness concept through phase-transforming particulate inclusions such as VO2 and BaTiO3. For the conventional method, the polymers, such as hot melt adhesive (HMA) and polyamide, are embedded into stainless steel, as a core, to form composite materials. Although this may not yield ideal HDHS composites, this approach ensures the outer surface of the composite as stiff and high strength as the metal matrix. Its overall damping is significantly improved, as oppose to its metal counterpart. It is found that, with small amount of polymer inclusion, the steel-polymer composites exhibit large increases in loss tangent, in expense of reducing overall modulus through the identification of resonant peaks in the low frequency regime. Through resonant ultrasound spectroscopy (RUS) experiments, we found that the torsional resonant frequency in relation to the hole size in the steel cubes. For the stainless steel cube with a volume of V=25mm x 25mm x 25mm cube, the constant torsion resonant frequency was around 57 kHz. Loss tangent increases as the volume of polymer increase, and the tan delta of stainless steel with polyamide is larger than that of steel with the HMA inclusion. For the steel-polymer composite with a hole size of 24 mm, its tan delta with polyamide inclusion is 3.952x10^{-2} larger than the hollow stainless steel cube, and is 2.1517x10^{-2} larger than that of steel with HMA inclusion. As for the negative-stiffness composites, the phase-transforming particles are placed in the polymers. Experimental investigations with the resonant ultrasound spectroscopy and dynamic shear rheometer are conducted. Phase-transforming particles in the polymer matrix, in some cases, show increase of damping, but no effects on modulus. It is hypothesized that the stiffness of polymer matrix may not be large enough to dance with the particulate inclusions in the vicinity of phase transformation. However, it is found that polyamide matrix, albeit weak in stiffness, still showed anomalous signals in loss tangent and dynamic modulus around the transformation temperature of the inclusions. By DSR, the polyamide+VO2 (5%) shows anomalous increase in tan delta by about 0.0264, as to all other samples. The amount of inclusions and matrix stiffness must be balanced to observe the anomalies. In addition to mechanical enhancements in the ferroelastic polymer composites, it has been reported in the literature that flexible electronic devices that contain ferroelastic inclusions in polymer matrix may exhibit unusual electrical properties.

    CHINESE ABSTRACT . . . . . . . . . . . . . . . . . . i ABSTRACT . . . . . . . . . . . . . . . . . . . . . . ii LIST OF TABLES . . . . .. . . . . . . . . . . . ix LIST OF FIGURES . . . . . . . . . . . . . x NOMENCLATURE . . . . . . . . . . . . . . . . . xix 1 Introduction . .. . . . . . . . . . . . . . . . . . 1 1.1 Goals and motivation . . . . . . . . . . . . . . . . 1 1.2 Literature review . . . . . . . . . . 2 1.2.1 Resonant ultrasound spectroscopy . .2 1.2.2 Phase transformation . . . . . . . . . . . 3 1.2.3 Phase-transforming materials . . . . . . . . . . 4 1.3 Outline of this thesis .. . . . . . . . . . . . . . . 6 2 Theoretical . . . . . . . . . . . . . . . . 10 2.1 Phase transformation theory . . . . . 10 2.1.1 Phase transformation phenomenon . . . . . . . . . . 11 2.1.2 Landau-Ginzburg theory of phase transformation . 11 2.1.3 Second-order transformation .. . . . . . 14 2.1.4 First-order transformation .. . . . . . 16 2.2 Theory of wave ultrasound . .. . . . . . . 16 2.3 Theory of RUS . . . . . . . .. . . . . . . . . . . 17 2.3.1 Free vibration of a sphere .. . . . . . . . . . . . 18 2.3.2 Free vibration of a cylinder . . 22 2.3.3 Resonant frequencies of a cube . . . . . . . . 24 2.4 Lorentzian curve fit for damping calculation ... . 27 3 Experimental . . 29 3.1 Sample descriptions . . .. . . . . . . . 29 3.1.1 Inclusions : VO2 and BaTiO3 . . . . . . . . . 29 3.1.2 Matrix : HMA and polyamide . . . . . . . . 32 3.1.3 Complex . . . . . . . . . . . 35 3.1.4 Stainless steel series .. . . . . . . . . . . . 38 3.2 Differential scanning calorimetry (DSC) . . . . 38 3.3 Dynsmic Shear Rheometer (DSR) . . . . . . . . . 38 3.3.1 The Instrument of DSR . . . . . . .. . . 39 3.3.2 The dynamic nature of DSR . . . . . 39 3.3.3 The experimental steps of DSR . .. . . 40 3.4 The RUS apparatus . . . . 40 3.4.1 Piezoelectric shear transducer . . . . . . . 41 3.4.2 Homemade shear transducer holder . . . . 41 3.4.3 Function generator . . . . . . 41 3.4.4 Lock-in amplifier . . . . .. . . 42 3.4.5 Oscilloscope . . . . . . . . 42 3.5 Data acquisition techniques by Agilent system . . 42 4 Results and Discussion . . . . 53 4.1 Inclusions : VO2 and BTO . . .. . . 53 4.1.1 DSC . . . . . . . . . . . 53 4.1.2 X-ray . . . . . 56 4.2 Matrix : HMA and Polyamide . . . . . . 62 4.3 VO2 or BaTiO3 in polymer matrix . . . . . 70 4.4 Real-world application . . . . . 93 4.4.1 Standard RUS results(stainless steel) . .. . . 93 4.4.2 Determination of damping from the torsion peak of hollow stainless steel cubes with different size hole . . 97 4.4.3 Determination of damping from torsion peak of composites of stainless steel with different size hole . 106 5 Conclusions and Future Work . . . . 125 5.1 Conclusions . . . . . . . . 125 5.2 Future works . . . . . 126 LIST OF REFERENCES . . . . 128 Appendix A: The LANL RPR fortran code . . . . . . . 131 Appendix B: Detailed DSR data for tested materials .. . 133 Appendix C: Frequency scan of HMA and polyamide at 40C . 150 Appendix D: Wave ultrasound for stainless steel composites . 153 Appendix E: BaTiO3 at low temperature . . . . . . 155 Appendix F: SS+HMA+BaTiO3 at low temperature . . 157 Appendix G: PMMA by DMA . . . . 163 Appendix H: Multilayer Stainless Steel . . .. . . . 165 Appendix I: Defense PowerPoint . . . . . . 167 VITA . . . . . . . . . . 185 INDEX . . . . . . . . . 186

    [1] A. Migliori and J. L. Sarrao. Resonant Ultrasound Spectroscopy. Wiley, 1997.
    [2] R. G. Leisure, K. Foster, J. E. Hightower, and D. S. Agosta. Internal friction studies by resonant ultrasound spectroscopy. Materials Science and Engineering, A370(1-2):34–40,2004.
    [3] W.M. Visscher Ming Lei U.F. Kocks J.L. Sarrao, S.R. Chen and A. Migliori. Determination of the crystallographic orientation of a single crystal using resonant ultrasound
    spectroscopy. Review of Scientific Instruments, 65(6):2139–2140, 1994.
    [4] H.J. McSkimin. Ultrasonic measurement techniques applicable to small solid specimens. J. Acoust. Soc. Am., 22:413–418, 1950.
    [5] H.J. McSkimin. Pulse superposition method for measuring ultrasonic wave velocities in solids. J. Acoust. Soc. Am., 33:12–16, 1961.
    [6] Y. S. Joo S. S. Kim Y. S. Kim Y. M. Cheong, H. K. Jung. Dynamic elastic constants of anisotropic materials by resonant ultrasound spectroscopy. IEEE Transactions on Ultrasonics,47(3):559–564, 2000.
    [7] A. Migliori and J.D. Maynard. Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens. Review of Scientific Instruments, 76(12):121301 1–7, 2005.
    [8] W. Thompson. On the rigidity of the earth. Philos. Trans. Royal Soc., 153:573, 1863.
    [9] H. Lamb. On the vibration of an elastic sphere. Proc. Math. Soc., 13, 1882.
    [10] A.E.H. Love. A treatise on the mathematical theory of elasticity. 1994.
    [11] I. Ohno. Free vibration of a rectangular parallelepiped crystal and its application to determination
    of elastic constants of orthorhombic crystals. J. Phys. Earth, 24:355, 1976.
    [12] O.L. Anderson I. Ohno, S. Yamamoto and J. Noda. Determination of elastic constants of trigonal crystals by the rectangular parallelepiped resonance method. Journal of Physics and Chemistry of Solids, 47(12):1103–1108, 1986.
    [13] J.D. Maynard. Resonant ultrasound spectroscopy. Proceedings of SPIE - The International Society for Optical Engineering, 3341:132–142, 1998.
    [14] J. A. Scales B. J. Zadler and M. L. Smith. Resonant ultrasound spectroscopy: theory and application. Geophysical Journal International, 156(1):154–169, 2004.
    [15] R. D. Mindlin. Stress-strain relations and vibrations of a granular medium. J. Appl. Phys., 27:1462, 1956.
    [16] T. Lee, R.S. Lakes, and A. Lal. Resonant ultrasound spectroscopy for measurement of mechanical damping: Comparison with broadband viscoelastic spectroscopy. Review of Scientific Instruments, 71(7):2855–2861, 2000.
    [17] Md. M. Rahman A. Yoneda, Y. Aizawa and S. Sakai. High frequency resonant ultrasound spectroscopy to 50 mhz: Experimental developments and analytical refinement. Japanese Journal of Applied Physics, 46(12):7898–7903, 2007.
    [18] N. Nobutomo, O. Hirotsugu, O. Teruo, H. Masahiko, and N. Masayoshi. Elastic constants and magnetic anisotropy of Co/Pt superlattice: Resonance-ultrasound-spectroscopy
    method. Japanese Journal of Applied Physics, 44(6B):4427–4430, 2005.
    [19] N. Nakamura H. Ogi and M. Hirao. Advanced resonant-ultrasound spectroscopy for studying anisotropic elastic constants of thin films. Materials Research Society Symposium Proceedings, 875:675–663, 2005.
    [20] G. W. Marshall S. J. Marshall J. H. So J. H. Kinney, J. R. Gladden and J. D. Maynard. Resonant ultrasound spectroscopy measurements of the elastic constants of human dentin. Journal of Biomechanics, 37(4):437–441, 2004.
    [21] T.W. Darling A. Migliori. Resonant ultrasound spectroscopy for materials studies and non-destructive testing. Ultrasonics, 34(2-5):473–476, 1996.
    [22] Quasar. Using Resonant Inspection in Production Environment. Copyright Quasar International,
    Inc, 2000.
    [23] R.D. Dixon R. Strong A. Migliori, T.M. Bell. Technical Report LA-UR-93-225, Los Alamos National Laboratory Report, 1993.
    [24] T.W. Darling A. Migliori. Technical Report LALP-95-9, Los Alamos National Laboratory Report, 1995.
    [25] K.-C. Pei S. Kim C.M. Fortunko H. Ledbetter, P. Heyliger. Artificial crack in steel: an ultrasonic-resonance-spectroscopy and model study. Review of Progress in Quantitative NDE, 14:2019–2025, 1995.
    [26] L. Landau. The theory of phase transitions. Nature, 138(3498):840–841, 1936.
    [27] C. Collins and Mi. Luskin. The computation of the austenitic-martensitic phase transition. Lecture Notes in Physics, 344:34–50, 1989.
    [28] R.D. James. Displacive phase transformations in solids. Journal of the Mechanics and Physics of Solids, 34(4):359–394, 1986.
    [29] J. B. Goodenough. The two components of the crystallographic transition in vo2. Journal of Solid State Chemistry, 3(4):490 – 500, 1971.
    [30] P. Rosakis, A. Ruina, and R. S. Lakes. Microbuckling instability in elastomeric cellular solids. J. Materials Science, 28:4667–4672, 1993.
    [31] E. K. H. Salje. Phase transitions in ferroelastic and co-elastic crystals. Cambridge University Press, Cambridge, London, 1990.
    [32] F. Falk. Model free energy, mechanics, and thermodynamics of shape memory alloys. Acta Metall., 285:1773–1780, 1980.
    [33] E. Salje. Phase transitions in ferroelastic and co-elastic crystals. Phys. Rev. B, 22:5284–5301, 1979.
    [34] R. S. Lakes. Extreme damping in compliant composites with a negative stiffness phase. Philosophical Magazine Letters, 81:95–100, 2001.
    [35] M. T. Dove. Introduction to lattice dynamics. Cambridge University Press, Cambridge,London, 1993.
    [36] H. H. Demarest. Cuberesonance method to determine the elastic constants of solids. J. Acoust. Soc. Am., 49(3B):768–775, Mar 1971.
    [37] D. Li, L. Dong, and R. S. Lakes. Resonant ultrasound spectroscopy of cubes over the full
    range of poisson’s ratio. Review of Scientific Instruments, 83(11):113902 – 113902–5,2012.
    [38] H. H. Zheng. Development of resonant ultrasound spectroscopy for determination of material properties of solids at high frequency. Master’s thesis, NCKU.
    [39] A. Migliori and T. W. Darling. Resonant ultrasound spectroscopy for materials studies and non-destructive testing. Ultrasonics, 34(2-5):473–476, 1996.
    [40] S. A. Teukolsky W. T. Vetterling W. H. Press, B. P. Flannery. Mumerical Recipes. Cambridge University Press, 1986.

    無法下載圖示 校內:2018-08-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE