簡易檢索 / 詳目顯示

研究生: 涂嘉惠
Tu, Chia-Hui
論文名稱: 高溫型質子交換膜燃料電池用之新交聯型聚苯基喹喔啉薄膜合成與性能研究
Synthesis and Properties of Novel Cross-linked Polyphenylquinoxalines Membranes for High Temperature Proton Exchange Membrane Fuel Cells
指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 79
中文關鍵詞: 交聯型聚苯基喹喔啉高溫型質子交換膜燃料電池長時間測試
外文關鍵詞: cross-linked polyphenylquinoxaline, high-temperature proton exchange membrane fuel cell (PEMFC), long-term durability test
相關次數: 點閱:68下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用benzyl 4-hydroxyphenyl ketone和1,2-diamino-4-fluorobenzene以1,4-diazabicyclo[2.2.2]octane 作為催化劑,一步驟合成出自聚合聚苯基喹喔啉之單體3-(4-hydroxyphenyl)-2-phenyl-6-fluoroquinoxaline 和2-(4-hydroxyphenyl)- 3-phenyl-6-fluoroquinoxaline,並利用此單體合成出含醚基的聚苯基喹喔啉(Polyphenylquinoxaline,PPQ),而此含有醚基團的PPQ 可溶於一般有機溶劑中方便加工,然而 PPQ 在摻雜過程中會發生溶解的情形,造成機械性質大幅下降,無法進行後續單電池元件製作與測試,因此本研究利用硫酸作為交聯劑,進行熱交聯反應,製備出不同交聯程度的共價鍵交聯聚苯基喹喔啉,並進行機械性質、抗氧化性質、熱性質等測試。研究顯示,交聯薄膜具有穩定的熱性質、機械性質與抗氧化,且交聯後能提升PPQ於磷酸中的溶解阻抗。
    薄膜進行磷酸摻雜後,始具備質子傳導的能力,而磷酸摻雜量隨交聯度的增加略有下降,在160 ℃下,交聯後薄膜均有0.009S/cm以上的質子導電度。單電池測試方面,分為十四天開關測試(150 ℃下負載電流0.2A/cm2操作12小時而後關閉燃料降回室溫 )與三十天穩定測試(150 ℃下負載電流0.2A/cm2操作720小時)。結果顯示交聯薄膜在14天開關測試開路電壓衰退速率為0.15 mV/h,操作電壓表現穩定,30天穩定測試中的電壓率退速率為0.039 mV/h,證實交聯後的PPQ薄膜可視為一種新穎式的高溫型質子交換膜燃料電池之材料。

    In this work, a self-polymerizable quinoxaline monomer was synthesized via one-pot synthesis. A 3-(4-hydroxyphenyl)-2-phenyl-6-fluoroquinoxaline and 2-(4-hydrox-yphenyl) -3-phenyl-6-fluoroquinoxaline mixture was synthesized from benzyl 4-hydroxyphenyl ketone and 1,2-diamino-4-fluorobenzene, and catalyzed by 1,4-diazabicyclo[2.2.2]octane. Then, an AB-type polyphenylquinoxaline (PPQ) was synthesized from the monomer.
    The polyphenylquinoxaline was used for cross-linking. Cross-linked PPQ membranes were prepared using sulfuric acid. The membranes exhibited great mechanical properties, oxidative stability, and thermal properties. However, they dissolve in high-concentration phosphoric acid. The acid content of phosphoric-acid-doped membranes decreased slightly with cross-linking, but all membranes could reach 0.009 S/cm proton conductivity at 160 °C. Membrane electrode assemblies were fabricated with an active area of 4 cm2 and Pt loading of 1 mg/cm2. A startup and shutdown test (operated at 150 °C with 0.2 A/cm2 for 12 h and then 12 h off at room temperature) and a 30-day long-term durability test (150 °C with 0.2 A/cm2) were conducted. In the startup and shutdown test, the cross-linked membrane showed a low open-circuit voltage decay rate of 0.15 mV/h. In the 30-day long-term durability test, the voltage decay rate was 0.039 mV/h. In both tests, the cross-linked membrane showed stable performance. Therefore, the cross-linked PPQ membrane can be regarded as a novel material for high-temperature proton exchange membrane fuel cells.

    摘要 I Extended Abstract II 誌謝 IX 總目錄 X 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 研究背景 4 1.3 研究動機與目的 5 第二章 文獻回顧與原理 6 2.1 質子交換膜燃料電池簡介 6 2.2 質子交換膜燃料電池原理 8 2.3 Polyphenylquinoxaline (PPQ)之簡介 11 2.4 PPQ 合成 13 2.5 質子傳導原理 17 2.6 質子交換膜性質提升 19 2.7 單電池測試與衰退機制 22 2.7.1 單電池衰退機制 22 2.7.2 電池長時間穩定性測試 23 第三章 實驗方法及步驟 26 3.1 實驗材料 26 3.2 實驗儀器 26 3.3 實驗步驟 28 3.3.1 PPQ之單體3-(4-hydroxyphenyl)-2-phenyl-6-fluoroquinoxalie和2-(4-hydroxyphenyl)-3-phenyl-6-fluoroquinoxaline合成 28 3.3.2 PPQ高分子合成與薄膜製備 29 3.3.3 PPQ 之薄膜製備 30 3.3.4 CPPQ高分子交聯薄膜製備 30 3.4 結構鑑定 31 3.4.1 傅利葉轉換紅外線光譜分析 (FT-IR) 31 3.4.2 核磁共振光譜分析 (1H-NMR) 32 3.4.3 元素分析(EA) 33 3.5 薄膜性質分析 34 3.5.1 固有黏度量測 (Inherent viscosity) 34 3.5.2 熱重損失分析儀 (TGA) 34 3.5.3 機械性質分析 (Mechanical properties) 35 3.5.4 熱機械分析儀 (TMA) 35 3.5.5 抗氧化分析 (Oxidative stability tests) 35 3.6 質子導電度量測 36 3.6.1 薄膜磷酸摻雜 36 3.6.2 質子導電度量測 (Proton conductivity) 36 3.7 膜電極製備 (Membrane electrode assemblies, MEAs) 39 3.7.1 觸媒漿料配製與塗佈 39 3.7.2 熱壓 39 3.8 單電池測試 40 3.8.1 單電池組裝 40 3.8.2 單電池效能測試 41 3.8.3 十四天開關測試 (Startup and shutdown tests) 41 3.8.4 三十天穩定測試 (Long-term durability tests) 41 第四章 結果與討論 42 4.1 合成結構鑑定與性質分析 42 4.1.1 自聚合PPQ單體與高分子合成 42 4.1.2 CPPQ交聯薄膜製備 43 4.1.3 固有黏度 (Inherent viscosity) 46 4.1.4 傅利葉轉換紅外線光譜分析 (FT-IR) 46 4.1.5 核磁共振光譜分析 (1H-NMR) 49 4.1.6 元素分析(EA) 50 4.2 交聯薄膜性質分析 51 4.2.1 熱性質分析(TGA) 51 4.2.2 熱機械分析 (TMA) 53 4.2.3 抗氧化分析 (Oxidative stability tests) 54 4.2.4 薄膜摻雜磷酸之分析 (Acid content analysis) 56 4.2.5 質子導電度分析 (Proton conductivity) 58 4.2.6 機械性質分析 (Mechanical properties) 60 4.3 PPQ-20薄膜單電池元件測試分析 62 4.3.1 單電池元件效能分析 62 4.3.2 單電池十四天開關測試 (Startup and shutdown tests) 64 4.3.3 單電池三十天穩定測試 (Long-term durability tests) 66 第五章 結論與未來展望 69 第六章 參考文獻 71

    [1] I. E. Agency, "KeyWorld energy statistics," 2017.
    [2] W. R. Grove, "XXIV. On voltaic series and the combination of gases by platinum," Philosophical Magazine Series 3, vol. 14, pp. 127-130, 1839.
    [3] Wikipedia, "William Robert Grove."
    [4] "Fuel Cell Today," 2014.
    [5] "Comparison of Fuel Cell Technologies," 2016.
    [6] A. Chandan, M. Hattenberger, A. El-Kharouf, S. Du, A. Dhir, V. Self, et al., "High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)–A review," Journal of Power Sources, vol. 231, pp. 264-278, 2013.
    [7] M. A. Haque, A. B. Sulong, K. S. Loh, E. H. Majlan, T. Husaini, and R. E. Rosli, "Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: A review," International Journal of Hydrogen Energy, vol. 42, pp. 9156-9179, 2017.
    [8] Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, "Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 C," Chemistry of materials, vol. 15, pp. 4896-4915, 2003.
    [9] Y. Shao, G. Yin, Z. Wang, and Y. Gao, "Proton exchange membrane fuel cell from low temperature to high temperature: material challenges," Journal of Power Sources, vol. 167, pp. 235-242, 2007.
    [10] S. Subianto, "Recent advances in polybenzimidazole/phosphoric acid membranes for high‐temperature fuel cells," Polymer International, vol. 63, pp. 1134-1144, 2014.
    [11] Q. Li, R. He, J.-A. Gao, J. O. Jensen, and N. J. Bjerrum, "The CO poisoning effect in PEMFCs operational at temperatures up to 200 C," Journal of the Electrochemical Society, vol. 150, pp. A1599-A1605, 2003.
    [12] W. Shi and L. A. Baker, "Imaging heterogeneity and transport of degraded Nafion membranes," Rsc Advances, vol. 5, pp. 99284-99290, 2015.
    [13] D. C. Seel and B. C. Benicewicz, "Polyphenylquinoxaline-based proton exchange membranes synthesized via the PPA Process for high temperature fuel cell systems," Journal of Membrane Science, vol. 405-406, pp. 57-67, 2012.
    [14] J. Larminie and A. Dicks, "Fuel Cell Systems Explained," 2003.
    [15] H. B. Erdem, "Synthesis and characterization of thermoplastic polyphenoxyquinoxalines," University of Akron, 2008.
    [16] J. Stille and J. Williamson, "Polyquinoxalines," Journal of Polymer Science Part A: Polymer Chemistry, vol. 2, pp. 3867-3875, 1964.
    [17] P. M. Hergenrother and H. H. Levine, "Phenyl‐substituted polyquinoxalines," Journal of Polymer Science Part A: Polymer Chemistry, vol. 5, pp. 1453-1466, 1967.
    [18] R. Kopitzke, C. Linkous, and G. Nelson, "Sulfonation of a poly (phenylquinoxaline) film," Journal of Polymer Science Part A: Polymer Chemistry, vol. 36, pp. 1197-1199, 1998.
    [19] R. W. Kopitzke, C. A. Linkous, H. R. Anderson, and G. L. Nelson, "Conductivity and water uptake of aromatic‐based proton exchange membrane electrolytes," Journal of the Electrochemical Society, vol. 147, pp. 1677-1681, 2000.
    [20] D. J. Klein, D. A. Modarelli, and F. W. Harris, "Synthesis of poly (phenylquinoxaline) s via self-polymerizable quinoxaline monomers," Macromolecules, vol. 34, pp. 2427-2437, 2001.
    [21] C. Qi, H. Jiang, L. Huang, Z. Chen, and H. Chen, "DABCO-catalyzed oxidation of deoxybenzoins to benzils with air and one-pot synthesis of quinoxalines," Synthesis, vol. 2011, pp. 387-396, 2011.
    [22] K.-D. Kreuer, "Proton conductivity: materials and applications," Chemistry of Materials, vol. 8, pp. 610-641, 1996.
    [23] T. Miyake and M. Rolandi, "Grotthuss mechanisms: from proton transport in proton wires to bioprotonic devices," Journal of Physics: Condensed Matter, vol. 28, p. 023001, 2015.
    [24] Y.-L. Ma, J. Wainright, M. Litt, and R. Savinell, "Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells," Journal of The Electrochemical Society, vol. 151, pp. A8-A16, 2004.
    [25] A. Panchenko, H. Dilger, E. Möller, T. Sixt, and E. Roduner, "In situ EPR investigation of polymer electrolyte membrane degradation in fuel cell applications," Journal of Power Sources, vol. 127, pp. 325-330, 2004.
    [26] N. N. Krishnan, D. Joseph, N. M. H. Duong, A. Konovalova, J. H. Jang, H.-J. Kim, et al., "Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells," Journal of Membrane Science, vol. 544, pp. 416-424, 2017.
    [27] N. Xu, X. Guo, J. Fang, H. Xu, and J. Yin, "Synthesis of novel polybenzimidazoles with pendant amino groups and the formation of their crosslinked membranes for medium temperature fuel cell applications," Journal of Polymer Science Part A: Polymer Chemistry, vol. 47, pp. 6992-7002, 2009.
    [28] Y. Zhang, X. Fei, G. Zhang, H. Li, K. Shao, J. Zhu, et al., "Preparation and properties of epoxy-based cross-linked sulfonated poly (arylene ether ketone) proton exchange membrane for direct methanol fuel cell applications," international journal of hydrogen energy, vol. 35, pp. 6409-6417, 2010.
    [29] S. Feng, Y. Shang, Y. Wang, G. Liu, X. Xie, W. Dong, et al., "Synthesis and crosslinking of hydroxyl-functionalized sulfonated poly (ether ether ketone) copolymer as candidates for proton exchange membranes," Journal of Membrane Science, vol. 352, pp. 14-21, 2010.
    [30] S. Dutczak, F. Cuperus, M. Wessling, and D. Stamatialis, "New crosslinking method of polyamide–imide membranes for potential application in harsh polar aprotic solvents," Separation and purification technology, vol. 102, pp. 142-146, 2013.
    [31] L.-F. Liu, S.-C. Yu, Y. Zhou, and C.-J. Gao, "Study on a novel polyamide-urea reverse osmosis composite membrane (ICIC–MPD): I. Preparation and characterization of ICIC–MPD membrane," Journal of membrane science, vol. 281, pp. 88-94, 2006.
    [32] M. Li, G. Zhang, H. Zuo, M. Han, C. Zhao, H. Jiang, et al., "End-group cross-linked polybenzimidazole blend membranes for high temperature proton exchange membrane," Journal of membrane science, vol. 423, pp. 495-502, 2012.
    [33] D. Joseph, N. N. Krishnan, D. Henkensmeier, J. H. Jang, S. H. Choi, H.-J. Kim, et al., "Thermal crosslinking of PBI/sulfonated polysulfone based blend membranes," Journal of Materials Chemistry A, vol. 5, pp. 409-417, 2017.
    [34] F. J. Pinar, P. Cañizares, M. A. Rodrigo, D. Úbeda, and J. Lobato, "Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes," Journal of Power Sources, vol. 274, pp. 177-185, 2015.
    [35] S.-W. Chuang, S. L.-C. Hsu, and C.-L. Hsu, "Synthesis and properties of fluorine-containing polybenzimidazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications," Journal of Power Sources, vol. 168, pp. 172-177, 2007.
    [36] S. D. Knights, K. M. Colbow, J. St-Pierre, and D. P. Wilkinson, "Aging mechanisms and lifetime of PEFC and DMFC," Journal of power sources, vol. 127, pp. 127-134, 2004.
    [37] T. J. Schmidt, "High-temperature polymer electrolyte fuel cells: durability insights," in Polymer Electrolyte Fuel Cell Durability, ed: Springer, 2009, pp. 199-221.
    [38] G. Liu, H. Zhang, J. Hu, Y. Zhai, D. Xu, and Z.-g. Shao, "Studies of performance degradation of a high temperature PEMFC based on H3PO4-doped PBI," Journal of Power Sources, vol. 162, pp. 547-552, 2006.
    [39] J. Hu, H. Zhang, Y. Zhai, G. Liu, and B. Yi, "500 h continuous aging life test on PBI/H3PO4 high-temperature PEMFC," International Journal of Hydrogen Energy, vol. 31, pp. 1855-1862, 2006.
    [40] Y. Zhai, H. Zhang, G. Liu, J. Hu, and B. Yi, "Degradation Study on MEA in H3PO4∕ PBI High-Temperature PEMFC Life Test," Journal of The Electrochemical Society, vol. 154, pp. B72-B76, 2007.
    [41] Y. Oono, A. Sounai, and M. Hori, "Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells," Journal of Power Sources, vol. 210, pp. 366-373, 2012.
    [42] Y. Oono, T. Fukuda, A. Sounai, and M. Hori, "Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells," Journal of Power Sources, vol. 195, pp. 1007-1014, 2010.
    [43] Y. Oono, A. Sounai, and M. Hori, "Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells," Journal of Power Sources, vol. 189, pp. 943-949, 2009.
    [44] S. Yu, L. Xiao, and B. Benicewicz, "Durability Studies of PBI‐based High Temperature PEMFCs," Fuel Cells, vol. 8, pp. 165-174, 2008.
    [45] C. Wannek, B. Kohnen, H. F. Oetjen, H. Lippert, and J. Mergel, "Durability of ABPBI‐based MEAs for High Temperature PEMFCs at Different Operating Conditions," Fuel Cells, vol. 8, pp. 87-95, 2008.
    [46] S. W. Chuang and S. L. C. Hsu, "Synthesis and properties of a new fluorine‐containing polybenzimidazole for high‐temperature fuel‐cell applications," Journal of Polymer Science Part A: Polymer Chemistry, vol. 44, pp. 4508-4513, 2006.
    [47] Z. Wenle, W. Meixiang, and L. Fengcai, "Conducting films of polyphenylquinoxaline," Polymer, vol. 35, pp. 2977-2979, 1994.
    [48] Y. Wang, T. S. Chung, and M. Gruender, "Sulfonated polybenzimidazole membranes for pervaporation dehydration of acetic acid," Journal of membrane science, vol. 415, pp. 486-495, 2012.
    [49] P. Staiti, F. Lufrano, A. Arico, E. Passalacqua, and V. Antonucci, "Sulfonated polybenzimidazole membranes—preparation and physico-chemical characterization," Journal of Membrane Science, vol. 188, pp. 71-78, 2001.
    [50] C. Linkous, H. Anderson, R. Kopitzke, and G. Nelson, "Development of new proton exchange membrane electrolytes for water electrolysis at higher temperatures," International Journal of Hydrogen Energy, vol. 23, pp. 525-529, 1998.
    [51] M. L. Di Vona, E. Sgreccia, S. Licoccia, G. Alberti, L. Tortet, and P. Knauth, "Analysis of temperature-promoted and solvent-assisted cross-linking in sulfonated poly (ether ether ketone)(SPEEK) proton-conducting membranes," The Journal of Physical Chemistry B, vol. 113, pp. 7505-7512, 2009.
    [52] B. Maranesi, H. Hou, R. Polini, E. Sgreccia, G. Alberti, R. Narducci, et al., "Cross‐Linking of Sulfonated Poly (ether ether ketone) by Thermal Treatment: How Does the Reaction Occur?," Fuel Cells, vol. 13, pp. 107-117, 2013.
    [53] Y. Zhang, J. D. Kim, and K. Miyatake, "Effect of thermal crosslinking on the properties of sulfonated poly (phenylene sulfone) s as proton conductive membranes," Journal of Applied Polymer Science, vol. 133, 2016.
    [54] S. L.-C. Hsu, C.-W. Liu, C.-H. Tu, H.-Y. Chuang, E. Bulycheva, and N. Belomoina, "Synthesis and properties of ABPPQ for high-temperature proton exchange membrane fuel cells," Polymer Bulletin, pp. 1-11.
    [55] T. Kinumoto, M. Inaba, Y. Nakayama, K. Ogata, R. Umebayashi, A. Tasaka, et al., "Durability of perfluorinated ionomer membrane against hydrogen peroxide," Journal of power Sources, vol. 158, pp. 1222-1228, 2006.
    [56] H. Tang, S. Peikang, S. P. Jiang, F. Wang, and M. Pan, "A degradation study of Nafion proton exchange membrane of PEM fuel cells," Journal of Power Sources, vol. 170, pp. 85-92, 2007.
    [57] P. Noyé, Q. Li, C. Pan, and N. J. Bjerrum, "Cross‐linked polybenzimidazole membranes for high temperature proton exchange membrane fuel cells with dichloromethyl phosphinic acid as a cross‐linker," Polymers for advanced technologies, vol. 19, pp. 1270-1275, 2008.
    [58] C. Liu, X. Wang, Y. Li, S. Zhang, J. Wang, and X. Jian, "Novel cross-linked membranes based on polybenzoxazine and polybenzimidazole containing 4-phenyl phthalazinone moiety for high-temperature proton exchange membrane," Journal of Polymer Research, vol. 24, p. 23, 2017.
    [59] S. Galbiati, A. Baricci, A. Casalegno, G. Carcassola, and R. Marchesi, "On the activation of polybenzimidazole-based membrane electrode assemblies doped with phosphoric acid," international journal of hydrogen energy, vol. 37, pp. 14475-14481, 2012.
    [60] M. Boaventura and A. Mendes, "Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes," International Journal of Hydrogen Energy, vol. 35, pp. 11649-11660, 2010.
    [61] Z. Qi and S. Buelte, "Effect of open circuit voltage on performance and degradation of high temperature PBI–H3PO4 fuel cells," Journal of Power Sources, vol. 161, pp. 1126-1132, 2006.
    [62] R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, et al., "Scientific aspects of polymer electrolyte fuel cell durability and degradation," Chemical reviews, vol. 107, pp. 3904-3951, 2007.
    [63] T. Søndergaard, L. N. Cleemann, H. Becker, D. Aili, T. Steenberg, H. A. Hjuler, et al., "Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole," Journal of Power Sources, vol. 342, pp. 570-578, 2017.
    [64] H.-L. Lin, Y.-C. Chou, T. L. Yu, and S.-W. Lai, "Poly (benzimidazole)-epoxide crosslink membranes for high temperature proton exchange membrane fuel cells," international journal of hydrogen energy, vol. 37, pp. 383-392, 2012.
    [65] J. Yang, Q. Li, L. N. Cleemann, J. O. Jensen, C. Pan, N. J. Bjerrum, et al., "Crosslinked hexafluoropropylidene polybenzimidazole membranes with chloromethyl polysulfone for fuel cell applications," Advanced Energy Materials, vol. 3, pp. 622-630, 2013.
    [66] J. Yang, D. Aili, Q. Li, L. N. Cleemann, J. O. Jensen, N. J. Bjerrum, et al., "Covalently Cross‐Linked Sulfone Polybenzimidazole Membranes with Poly (Vinylbenzyl Chloride) for Fuel Cell Applications," ChemSusChem, vol. 6, pp. 275-282, 2013.

    下載圖示 校內:2023-08-17公開
    校外:2023-08-17公開
    QR CODE