簡易檢索 / 詳目顯示

研究生: 黃瓊瑤
Huang, Chiung-Yao
論文名稱: 結合催化性模板選擇性降解與逐層沉積技術以建構三維分層聚電解質介面
3D Hierarchical Polyelectrolyte Interfaces Produced by Combining Selective Degradation of Catalytic Stamp with Layer-by-Layer Deposition
指導教授: 李介仁
Li, Jie-Ren
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 93
中文關鍵詞: 催化性模板聚電解質逐層自組裝技術三維分層微奈米結構
外文關鍵詞: catalytic stamp, polyelectrolyte, LBL assembly, 3D hierarchical structures
相關次數: 點閱:101下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在微米和奈米尺度上對各種表面進行圖案化的技術開發對於生物材料、光電設備以及組織工程等領域備受關注,而精確控制二維或三維空間中的分子取向和相對位置是目前製造多功能分層結構所面臨的挑戰。在分層微奈米結構的製作過程中普遍會使用逐層沉積技術結合軟微影技術來達到多層薄膜的設計,並且會挑選帶電荷分子(如聚電解質)來當作組裝物質,而聚電解質是一種水溶性、低毒性以及生物相容性的聚合物,可輕易通過一些條件控制來對多層膜的厚度組成或者表面特性進行調控。然而基於該製造技術上經常受到溶液橫向擴散以及圖案解析度降低的影響,導致在圖案定義過程中不容易形成高保真度的複雜化聚電解質結構。因此本研究目的在於通過自上而下(top-down)和自下而上(bottom-up)製程技術的整合,來突破堆疊組裝所產生的侷限性,藉由將可催化降解胜肽型聚電解質的胰蛋白酶(trypsin)利用共價鍵結的方式固定於微奈米結構模板上,以製作具有特定結構的催化性模板(catalytic stamp)對帶正電荷的聚離氨酸(PLL)進行多種幾何形狀的圖案化。並且通過與帶負電荷的聚麩氨酸(PGA)反覆沉積於表面結構上以形成多層薄膜。根據我們研究結果表明三維分層結構的(PLL/PGA)薄膜系統可以透過重複聚電解質自組裝堆疊以及催化性模板選擇性溶蝕的交替過程來進行構建。該製程方法可以設計大面積週期性的複雜自組裝結構,基於明確定義的異質表面系統還能實現開發多功能位點表面的潛力。目前已嘗試將微奈米級結構化的聚電解質多層膜用於提供微奈米級空間侷限來引導膠原蛋白選擇性吸附的排列行為,還能調控表面化學性質作為膠原蛋白奈米纖維圖案轉移的仿生界面。

    Surface modified with polyelectrolyte multilayers (PEMs) offers diverse physico-chemical properties and potential applications. Layer-by-layer (LBL) deposition is commonly used in the construction of PEMs, but the limitation of stacking and lateral diffusion results in losing structural integrity while patterning PEMs. To overcome the limitation, an innovative method that combines top-down and bottom-up manners was developed to construct 3D hierarchical micro- and nanoscale biodegradable PEMs using selective degradation of catalytic stamp combined with LBL deposition. A patterned poly-L-lysine (PLL, positively charged PE) layer fabricated via enzymatic degradation using a designed polydimethylsiloxane (PDMS) stamp immobilized with enzyme on a substrate serves as foundation for LBL deposition of another negatively charged PEs (L-glutamic acid, PGA). 3D hierarchical PLL/PGA multilayered films can be fabricated through repeating the action of catalytic stamp degradation and the alternate electrostatic deposition of PGA and PLL. Such PLL/PGA multilayered films enable to investigate the adsorption behavior of proteins onto PE-based nanotopography. Our results demonstrate that PE-based nanotopography with various geometries not only provides the spatial organization and electrostatic adsorption of protein films but also facilitates the transfer of the protein patterns via bioconjugation chemistry.

    目錄i 圖目錄iii 第一章、緒論1 1.1 研究背景1 1.2 軟微影製程(Soft Lithography)2 1.3 催化性模板微影技術(Catalytic Stamp Lithography)4 1.4 蛋白質水解酶/蛋白酶(Proteolytic enzymes/Proteases)5 1.5 聚電解質(Polyelectrolyte, PE)6 第二章、探討胜肽型與合成型聚電解質於有機矽烷薄膜表面自組裝之行為12 2.1 實驗策略12 2.2 材料與方法13 2.2.1 實驗材料13 2.2.2 實驗儀器14 2.2.3 溶液配製14 2.2.4 實驗步驟15 2.3 研究結果與討論17 2.3.1 聚電解質於線狀有機矽烷微奈米結構自組裝之型態17 2.3.2 聚電解質分子量對其於有機矽烷微奈米結構自組裝的影響20 第三章、結合具催化性模板與分子自組裝建構不同微奈米結構的22 3.1 實驗策略22 3.2 材料與方法23 3.2.1 實驗材料23 3.2.2 實驗儀器24 3.2.3 溶液配製25 3.2.4 實驗步驟25 3.3 研究結果與討論28 Part I. 催化性模板製備條件最佳化28 3.3.1 具選擇性降解的催化模板對於聚電解質薄膜分解的可行性28 3.3.2 酵素固定於模板之最適化條件30 3.3.3 催化性模板對聚電解質薄膜的溶蝕效果33 Part II. 建構複雜圖案化分層結構36 3.3.4 不同幾何形狀催化性模板對聚電解質薄膜的溶蝕效果36 3.3.5 聚電解質堆疊層數對於結構真實性的影響39 3.3.6 結合催化性模板與聚電解質自組裝創建三微結構多層薄膜41 3.3.7 聚電解質分子量對其於微奈米結構表面自組裝的影響 46 第四章、結論與未來方向48 4.1 探討(魚)第一型膠原蛋白直接吸附於聚電解質薄膜之自組裝行為49 4.2 探討(魚)第一型膠原蛋白結構轉移於聚電解質薄膜表面之行為51 參考文獻53 圖附錄58

    1.Betancourt, T.; Brannon-Peppas, L. Micro- and Nanofabrication Methods in Nanotechnological Medical and Pharmaceutical Devices. International Journal of Nanomedicine 2006, 1 (4), 483-95.
    2.Guo, M.; Qu, Z.; Min, F.; Li, Z.; Qiao, Y.; Song, Y. Advanced Unconventional Techniques for Sub-100 nm Nanopatterning. InfoMat 2022, 4 (8), e12323.
    3.Zhao, H.; Lee, Y.; Han, M.; Sharma, B. K.; Chen, X.; Ahn, J.-H.; Rogers, J. A. Nanofabrication Approaches for Functional Three-Dimensional Architectures. Nano Today 2020, 30, 100825.
    4.Mirkin, C. A.; Rogers, J. A. Emerging Methods for Micro- and Nanofabrication. MRS Bulletin 2001, 26 (7), 506-509.
    5.Rose, M. A.; Bowen, J. J.; Morin, S. A. Emergent Soft Lithographic Tools for the Fabrication of Functional Polymeric Microstructures. ChemPhysChem 2019, 20 (7), 909-925.
    6.Xia, Y.; Whitesides, G. M. Soft Lithography. Annual Review of Materials Science 1998, 28 (1), 153-184.
    7.Whitesides, G. M.; Ostuni, E.; Takayama, S.; Jiang, X.; Ingber, D. E. Soft Lithography in Biology and Biochemistry. Annual Review of Biomedical Engineering 2001, 3 (1), 335-373.
    8.Qin, D.; Xia, Y.; Whitesides, G. M. Soft Lithography for Micro- and Nanoscale Patterning. Nature Protocols 2010, 5 (3), 491-502.
    9.Hui, C. Y.; Jagota, A.; Lin, Y. Y.; Kramer, E. J. Constraints on Microcontact Printing Imposed by Stamp Deformation. Langmuir 2002, 18 (4), 1394-1407.
    10.Delamarche, E.; Schmid, H.; Bietsch, A.; Larsen, N. B.; Rothuizen, H.; Michel, B.; Biebuyck, H. Transport Mechanisms of Alkanethiols During Microcontact Printing on Gold. The Journal of Physical Chemistry B 1998, 102 (18), 3324-3334.
    11.Xia, Y.; Whitesides, G. M. Use of Controlled Reactive Spreading of Liquid Alkanethiol on the Surface of Gold to Modify the Size of Features Produced by Microcontact Printing. Journal of the American Chemical Society 1995, 117 (11), 3274-3275.
    12.Gannon, G.; Larsson, J. A.; Greer, J. C.; Thompson, D. Quantification of Ink Diffusion in Microcontact Printing with Self-Assembled Monolayers. Langmuir 2009, 25 (1), 242-247.
    13.Alom Ruiz, S.; Chen, C. S., Microcontact Printing: A Tool to Pattern. Soft Matter 2007, 3 (2), 168-177.
    14.Mao, Z.; Ganesh, M.; Bucaro, M.; Smolianski, I.; Gross, R. A.; Lyons, A. M. High Throughput, High Resolution Enzymatic Lithography Process: Effect of Crystallite Size, Moisture, and Enzyme Concentration. Biomacromolecules 2014, 15 (12), 4627-4636.
    15.Mizuno, H.; Buriak, J. M. Nanoscale Patterning of Organic Monolayers by Catalytic Stamp Lithography: Scope and Limitations. ACS Applied Materials & Interfaces 2009, 1 (12), 2711-2720.
    16.Shestopalov, A. A.; Clark, R. L.; Toone, E. J. Inkless Microcontact Printing on Self-Assembled Monolayers of Fmoc-Protected Aminothiols. Journal of the American Chemical Society 2007, 129 (45), 13818-13819.
    17.Mizuno, H.; Buriak, J. M. Building Upon Patterned Organic Monolayers Produced via Catalytic Stamp Lithography. ACS Applied Materials & Interfaces 2010, 2 (8), 2301-2307.
    18.Mizuno, H.; Buriak, J. M. Catalytic Stamp Lithography for Sub-100 nm Patterning of Organic Monolayers. Journal of the American Chemical Society 2008, 130 (52), 17656-17657.
    19.Shestopalov, A. A.; Morris, C. J.; Vogen, B. N.; Hoertz, A.; Clark, R. L.; Toone, E. J. Soft-Lithographic Approach to Functionalization and Nanopatterning Oxide-Free Silicon. Langmuir 2011, 27 (10), 6478-6485.
    20.Ramírez-Larrota, J. S.; Eckhard, U. An Introduction to Bacterial Biofilms and Their Proteases, and Their Roles in Host Infection and Immune Evasion. Biomolecules 2022, 12 (2).
    21.Raveendran, S.; Parameswaran, B.; Ummalyma, S. B.; Abraham, A.; Mathew, A. K.; Madhavan, A.; Rebello, S.; Pandey, A. Applications of Microbial Enzymes in Food Industry. Food Technology and Biotechnology 2018, 56 (1), 16-30.
    22.López-Otín, C.; Bond, J. S. Proteases: Multifunctional Enzymes in Life and Disease. The Journal of Biological Chemistry 2008, 283 (45), 30433-7.
    23.Cai, Y.; Dong, T.; Zhang, X.; Liu, A. Morphology and Enzyme-Mimicking Activity of Copper Nanoassemblies Regulated by Peptide: Mechanism, Ultrasensitive Assaying of Trypsin, and Screening of Trypsin Inhibitors. Analytical Chemistry 2022, 94 (51), 18099-18106.
    24.Šlechtová, T.; Gilar, M.; Kalíková, K.; Tesařová, E. Insight into Trypsin Miscleavage: Comparison of Kinetic Constants of Problematic Peptide Sequences. Analytical Chemistry 2015, 87 (15), 7636-7643.
    25.Wanasingha, N.; Dorishetty, P.; Dutta, N. K.; Choudhury, N. R. Polyelectrolyte Gels: Fundamentals, Fabrication and Applications. Gels (Basel, Switzerland) 2021, 7 (3).
    26.Criado-Gonzalez, M.; Mijangos, C.; Hernández, R. Polyelectrolyte Multilayer Films Based on Natural Polymers: From Fundamentals to Bio-Applications. Polymers (Basel) 2021, 13 (14).
    27.vander Straeten, A.; Lefèvre, D.; Demoustier-Champagne, S.; Dupont-Gillain, C. Protein-Based Polyelectrolyte Multilayers. Advances in Colloid and Interface Science 2020, 280, 102161.
    28.Potaś, J.; Winnicka, K. The Potential of Polyelectrolyte Multilayer Films as Drug Delivery Materials. International Journal of Molecular Sciences 2022, 23 (7).
    29.Boudou, T.; Crouzier, T.; Ren, K.; Blin, G.; Picart, C. Multiple Functionalities of Polyelectrolyte Multilayer Films: New Biomedical Applications. Advanced Materials 2010, 22 (4), 441-467.
    30.Hammond, P. T. Building Biomedical Materials Layer-by-Layer. Materials Today 2012, 15 (5), 196-206.
    31.Le Floch, F.; Belbekhouche, S.; Oniszczuk, J.; Carbonnier, B. Smart Polyelectrolyte Multilayer Coatings for Drug Delivery. Smart Nanocontainers 2020, 295-314.
    32.Jaggessar, A.; Shahali, H.; Mathew, A.; Yarlagadda, P. K. D. V. Bio-Mimicking Nano and Micro-Structured Surface Fabrication for Antibacterial Properties in Medical Implants. Journal of Nanobiotechnology 2017, 15 (1), 64.
    33.Séon, L.; Lavalle, P.; Schaaf, P.; Boulmedais, F. Polyelectrolyte Multilayers: A Versatile Tool for Preparing Antimicrobial Coatings. Langmuir 2015, 31 (47), 12856-12872.
    34.Guo, S.; Zhu, X.; Loh, X. J. Controlling Cell Adhesion Using Layer-by-Layer Approaches for Biomedical Applications. Materials Science and Engineering: C 2017, 70, 1163-1175.
    35.Lee, S.; Kim, D.; Kim, S.-M.; Kim, J.-A.; Kim, T.; Kim, D.-Y.; Yoon, M.-H. Polyelectrolyte Multilayer-Assisted Fabrication of Non-Periodic Silicon Nanocolumn Substrates for Cellular Interface Applications. Nanoscale 2015, 7 (35), 14627-14635.
    36.Ren, K.-F.; Hu, M.; Zhang, H.; Li, B.-C.; Lei, W.-X.; Chen, J.-Y.; Chang, H.; Wang, L.-M.; Ji, J. Layer-by-Layer Assembly as a Robust Method to Construct Extracellular Matrix Mimic Surfaces to Modulate Cell Behavior. Progress in Polymer Science 2019, 92, 1-34.
    37.Sousa, M. P.; Arab-Tehrany, E.; Cleymand, F.; Mano, J. F. Surface Micro- and Nanoengineering: Applications of Layer-by-Layer Technology as a Versatile Tool to Control Cellular Behavior. Small 2019, 15 (30), 1901228.
    38.Li, Q.; Ma, L.; Gao, C. Biomaterials for In Situ Tissue Regeneration: Development and Perspectives. Journal of Materials Chemistry B 2015, 3 (46), 8921-8938.
    39.Gumbley, P.; Koylu, D.; Pawle, R. H.; Umezuruike, B.; Spedden, E.; Staii, C.; Thomas, S. W. Wavelength-Selective Disruption and Triggered Release with Photolabile Polyelectrolyte Multilayers. Chemistry of Materials 2014, 26 (3), 1450-1456.
    40.Hu, X.; Qureishi, Z.; Thomas, S. W. Light-Controlled Selective Disruption, Multilevel Patterning, and Sequential Release with Polyelectrolyte Multilayer Films Incorporating Four Photocleavable Chromophores. Chemistry of Materials 2017, 29 (7), 2951-2960.
    41.Shi, F.; Wang, Z.; Zhao, N.; Zhang, X. Patterned Polyelectrolyte Multilayer:  Surface Modification for Enhancing Selective Adsorption. Langmuir 2005, 21 (4), 1599-1602.
    42.Volodkin, D.; Von Klitzing, R.; Moehwald, H. Polyelectrolyte Multilayers: Towards Single Cell Studies. Polymers, 2014, 6(5), 1502-1527.
    43.Wang, Z.; Zhang, P.; Kirkland, B.; Liu, Y.; Guan, J. Microcontact Printing of Polyelectrolytes on PEG Using an Unmodified PDMS Stamp for Micropatterning Nanoparticles, DNA, Proteins and Cells. Soft Matter 2012, 8 (29), 7630-7637.
    44.Jiang, X.; Hammond, P. T. Selective Deposition in Layer-by-Layer Assembly:  Functional Graft Copolymers as Molecular Templates. Langmuir 2000, 16 (22), 8501-8509.
    45.Zheng, H.; Rubner, M. F.; Hammond, P. T. Particle Assembly on Patterned “Plus/Minus” Polyelectrolyte Surfaces via Polymer-on-Polymer Stamping. Langmuir 2002, 18 (11), 4505-4510.
    46.Salaita, K.; Wang, Y.; Mirkin, C. A. Applications of Dip-Pen Nanolithography. Nature Nanotechnology 2007, 2 (3), 145-155.
    47.Wang, C.; Park, M. J.; Seo, D. H.; Phuntsho, S.; Gonzales, R. R.; Matsuyama, H.; Drioli, E.; Shon, H. K. Inkjet Printed Polyelectrolyte Multilayer Membrane Using a Polyketone Support for Organic Solvent Nanofiltration. Journal of Membrane Science 2022, 642, 119943.
    48.Azinfar, A.; Helm, C. A. Self-Patterning of Polyelectrolyte Multilayer Films: The Roles of PSS Molecular Weight, the Top Layer, and Post-Preparation Treatment. Macromolecules 2023.
    49.Azinfar, A.; Neuber, S.; Vancova, M.; Sterba, J.; Stranak, V.; Helm, C. A. Self-Patterning Polyelectrolyte Multilayer Films: Influence of Deposition Steps and Drying in a Vacuum. Langmuir 2021, 37 (35), 10490-10498.
    50.Asor, L.; Nir, S.; Oded, M.; Reches, M.; Shenhar, R. Nano-Patterned Polyelectrolyte Multilayers Assembled Using Block Copolymer Templates: The Combined Effect of Ionic Strength and Nano-Confinement. Polymer 2017, 126, 56-64.
    51.Guyomard-Lack, A.; Delorme, N.; Moreau, C.; Bardeau, J.-F.; Cathala, B. Site-Selective Surface Modification Using Enzymatic Soft Lithography. Langmuir 2011, 27 (12), 7629-7634.
    52.Bausch, G. G.; Stasser, J. L.; Tonge, J. S.; Owen, M. J. Behavior of Plasma-Treated Elastomeric Polydimethylsiloxane Coatings in Aqueous Environment. Plasmas and Polymers 1998, 3 (1), 23-34.
    53.Kim, D.; Herr, A. E. Protein Immobilization Techniques for Microfluidic Assays. Biomicrofluidics 2013, 7 (4), 41501.
    54.Alameddine, R.; Wahl, A.; Pi, F.; Bouzalmate, K.; Limozin, L.; Charrier, A.; Sengupta, K. Printing Functional Protein Nanodots on Soft Elastomers: From Transfer Mechanism to Cell Mechanosensing. Nano Letters 2017, 17 (7), 4284-4290.
    55.Volcke, C.; Gandhiraman, R. P.; Basabe-Desmonts, L.; Iacono, M.; Gubala, V.; Cecchet, F.; Cafolla, A. A.; Williams, D. E. Protein Pattern Transfer for Biosensor Applications. Biosensors and Bioelectronics 2010, 25 (6), 1295-1300.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE