| 研究生: |
吳洛昀 Wu, Lo-Yun |
|---|---|
| 論文名稱: |
以田口方法改善消影ITO觸控面板微短路不良 Improving the Micro-short Circuit Defects of ITO Touch Panels with Index Margin Film by Taguchi Method |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 光學複合膜 、觸控面板 、微短路 、田口方法 、片電阻 |
| 外文關鍵詞: | Index Margin film, Touch sensor, Micro-circuit short, Taguchi method, Sheet Resistance |
| 相關次數: | 點閱:160 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在觸控面板技術的演進中,觸控線路常使用ITO材料,因為其具有較佳的導電及透光性能,但在外觀品味上則會有蝕刻紋路較明顯的問題。因此發展出搭配消影光學複合層的ITO膜,來改善面板的可視度;消影光學複合層使用SiO2及Nb2O5來改善光學差異;然而在製作複合層膜時,也可能產生微短路的問題。
本論文主要在探討於開發搭配消影光學複合層的ITO導電膜時,所發生之微短路問題。首先透過各層逆向拆解量測,定義出光學層之面阻抗特性指標,對異常光學複合層進行EDS、XPS等失效分析,觀察鍍膜品質;接著以田口方法規劃實驗,確定品質特性與理想機能,決定控制因子與變動水準,進行L9 (34直交表)實驗。結果顯示影響品質特性之顯著因子為鍍膜台車使用圈數,調整因子為鍍膜流程。經過參數的改善,預測的品質特性-光學複合層之片電阻,由4.5×1011Ω/□提升至1.4×1012Ω/□。改善後參數樣品量測結果為1.03×1012Ω/□,可符合規格1.0×1012Ω/□,對鍍膜品質有很大的提升;實際上線後,將測試品持續生產至電性檢測站量測,已完全改善微短路問題。
In the technology evolution of touch panels, ITO materials are always used in touch circuits because they have better electrical conductivity and light transmittance. On the other hand, the related etching lines are visually obvious which affect the visual appearance quality. Thus, ITO films with an anti-shadow optical composite layer were developed to improve visibility. The anti-shadow optical composite layer typically uses SiO2 and Nb2O5 to reduce the optical difference and is referred to as the Index Margin film (IM film). However, the micro-short circuits could occur in the process of making the IM film.
The goal of thesis is mainly to resolve this micro-short circuit problem that occurs in developing the ITO conductive film with the anti-shadowing optical composite layer. Through disassembly and measurement of each layer, the surface impedance characteristic index of the optical layer was defined and failure analysis by EDS and XPS was conducted to evaluate the quality of the optical composite layer. Then, experiments were planned by Taguchi method via an L9 table experiment.
The results show that the significant factor is the cart life used in the thin film process and the adjustment factor is the thin film process sequence. After adopting the improved parameters, the predicted surface sheet resistance of the optical composite layer increases from 4.5×1011Ω/□to1.4×1012Ω/□; thus, greatly improving the quality of the thin film. The resulted product sheet resistance measured is 1.03×1012Ω/□, which meets the specification of 1.0×1012Ω/□, completely resolved the micro-short circuit problem.
[1] Ik-Seok Yang, and Oh-Kyong Kwon, “A touch controller using differential sensing method for on-cell capacitive touch screen panel systems”, IEEE Transactions on Consumer Electronics, Vol. 57, No. 3, pp. 1027-1032, 2011.
[2] Lin-Lin, and Weber Chien, “Emerging touch techniques in smart handheld device”, Proceedings of Technical Program of 2012 VLSI Technology System and Application, 2012.
[3] Janos Schanda, “Colorimetry : Understanding the CIE system”, John Wiley and Sons, 2007.
[4] Kwan Yiew Lau, “Structure and electrical properties of silica-based polyethylene nanocomposites”, University of Southampton Electronics and Computer Doctoral Dissertation, 2013.
[5]彭能、唐仁衡、高遠、張四奇、肖世文,“燒結溫度對Nb2O5-X靶材性能的影響”,材料研究與應用,12卷,1期,28-31頁,2018。
[6]吳政鴻,“WO3-Nb2O5混合膜應用於製作高對比度反射式電致色變元件”,國立聯合大學光電工程研究所碩士論文,2014。
[7]華宗庭,“利用快速交替式非對稱脈衝反應性磁控濺鍍沉積Nb2O5-SiO2混合膜製鍍漸變折射率濾光片特性研究”,明新科技大學電子工程研究所碩士論文,2014。
[8] H. Störmer, A. Weber, V. Fischer, E. Ivers-Tiffée, and D. Gerthsen, “Anodically formed oxide films on niobium : Microstructural and electrical properties”, Journal of the European Ceramic Society, Vol. 29, No. 9, pp. 1751-1753, 2009.
[9] G. D. L. Semione, A. Dangwal Pandey, S. Tober, J. Pfrommer, A. Poulain, J. Drnec, G. Schütz, T. F. Keller, H. Noei, V. Vonk, B. Foster, and A. Stierle, “Niobium near-surface composition during nitrogen infusion relevant for superconducting radio-frequency cavities”, Phys. Rev. Accel. Beams, Vol. 22, No. 10, pp. 103102, 2019.
[10] David Bach, “EELS investigations of stoichiometric niobium oxides and niobium-based capacitors”, Universität Karlsruhe Doctoral Dissertation, 2009.
[11] 林士欽、賴識翔、黃智勇、梁沐旺、王慶鈞、唐謙仁、田春林,“複合、薄膜及多層膜的應力分析技術”,機械工業雜誌,423期,88頁,2018。
[12] Vesna Janicki, Jordi Sancho-Parramon, Sergiy Yulin, Marcel Flemming, and Andrey Chuvilin, “Optical and structural properties of Nb2O5–SiO2 mixtures in thin films”, Surface and Coatings Technology, Vol. 206, No. 17, pp. 3650-3657, 2012.
[13] Kaupo Kukli, Marianna Kemell, Mikko J Heikkilä, Helena Castán, Salvador Dueñas, Kenichiro Mizohata, Mikko Ritala, and Markku Leskelä, “Silicon oxide-niobium oxide mixture films and nanolaminates grown by atomic layer deposition from niobium pentaethoxide and hexakis(ethylamino) disilane”, IOP Publishing Ltd, Vol. 31, No. 19, pp. 15-19, 2020.
[14] A. Mehonic, A. Shluger, D. Gao, I. Valov, E. Miranda, D. Ielmini, A. Bricalli, E. Ambrosi, Can Li, J. Yang, Q. Xia, and A. Kenyon, “Silicon oxide (SiOx) : A promising material for resistance switching”, Advanced Materials, Vol. 30, No. 43, pp. 12-17, 2018.
[15] Andrius Melninkaitis, Tomas Tolenis, Lina Mažulė, Julius Mirauskas, Valdas Sirutkaitis, Benoit Mangote, Xinghai Fu, Myriam Zerrad, Laurent Gallais, Mireille Commandré, Simonas Kičas, and Ramutis Drazdys, “Characterization of zirconia–and niobia–silica mixture coatings produced by ion-beam sputtering”, Applied Optics, Vol. 50, No. 9, pp. 188-196, 2011.
[16] N. Fuschillo, B. Lalevic, and N.K. Annamalai, “Dielectric properties of amorphous Nb2O5 thin films”, Thin Solid Films, Vol. 30, No. 1, pp. 145-152, 1975.
[17]謝育民,“電子在半導體量子點中的傳輸性質與穿隧率”,國立成功大學機械工程學系碩士論文,2004。
[18]游凱復,“微米穿隧接點之微分電導與溫度關係之研究”,國立交通大學物理研究所碩士論文,2011。
[19] Dengzun Yao, Rui Cai, Chungen Zhou, Jiangbo Sha, and Huiren Jiang, “Experimental study and modeling of high temperature oxidation of Nb-base in situ composites”, Corrosion Science, Vol. 51, No. 2, pp. 364-370, 2009.
[20] Yu Liu, Wei Shao, Changliang Wang, and Chungen Zhou, “Microstructure and oxidation behavior of Mo-Si-Al coating on Nb-based alloy”, Journal of Alloys and Compounds, Vol. 735, pp. 2247-2253, 2018.
[21] “Southwest center for microsystems education (SCME) University of New Mexico”, Deposition Overview for Microsystems, 2014.
[22] Konuma Mitsuharu, “Film deposition by plasma techniques”, Alpha Science International, 1992.
[23] John A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, Journal of Vacuum Science and Technology, Vol. 11, No. 4, pp. 666, 1974.
[24] J.A. Venables, and G.D.T. Spiller, “Nucleation and growth of thin films”, Reports on Progress in Physics, Vol. 47, pp. 399-459, 1984.
[25]郭益男,“反應性射頻磁控濺鍍氧化鋅薄膜之光激發光特性之研究”,國立中山大學電機工程學系碩士論文,2004。
[26] Stephen M. Rossnagel, William D. Westwood, and Jerome J. Cuomo, “Handbook of plasma processing technology”, Noyes Publications, 1982.
[27]李輝煌,“田口方法品質設計的原理與實務(第四版)”,高立圖書有限公司,2019。
[28]潘扶民,“XPS 超薄薄膜分析”,科儀新知,24卷,3期,6-7頁,2002。
[29] Zhang Weibin, Wu Weidong, Wang Xueming, Cheng Xinlu, Yan Dawei, Shen Changle, Peng Liping, Wang Yuying, and Bai Li, “The investigation of NbO2 and Nb2O5 electronic structure by XPS, UPS and first principles methods”, Surface and Interface Analysis, Vol. 45, No. 8, pp. 1206-1210, 2013.
[30] M. Delheusy, A. Stierle, N. Kasper, R. P. Kurta, A. Vlad, H. Dosch, C. Antoine, A. Resta, E. Lundgren, and J. Andersen, “X-ray investigation of subsurface interstitial oxygen at Nb/oxide interfaces”, Applied Physics Letters, Vol. 92, No. 10, pp. 101911, 2008.