| 研究生: |
歐建志 Ou, Chien-Chih |
|---|---|
| 論文名稱: |
(Ba(1-x)Srx)5Nb4O15 陶瓷材料的結構與微波介電性質 Crystal Structure and Microwave Dielectric Property Relations in (Ba(1-x)Srx)5Nb4O15 Ceramics |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 介電 、微波 |
| 外文關鍵詞: | (Ba(1-x)Srx)5Nb4O15, dielectric, micowave |
| 相關次數: | 點閱:43 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Ba5Nb4O15 材料成份系統由於具有高介電係數 (εr)、高品質因數 (Q) 和趨於零的共振頻率溫度係數 (τf),而被廣泛應用於微波介電材料的研究上,然而大多數的研究都是在探討外在因素對電性的影響,像是藉由製程提昇密度來增進介電性及第二相 (second phase) 對介電性質的影響等,鮮少有文章在探討成分內在結構因素與電性質方面的相互關係。
過去的研究指出,添加 Sr2+ 於 Ba5Nb4O15 成分中,能夠完全固溶形成 (Ba(1-x)Srx)5Nb4O15 成份系統,而不會產生第二相,故本實驗以結晶化學的方法,探討當不同添加量的 Sr2+ 固溶進入 Ba5Nb4O15 結構時,其晶體結構變化對電性質的影響。
結果發現介電常數與晶格常數 c-a ratio 成正比,這是因為在 c-a ratio 有最大值時,晶格比例在 c 軸方向呈現最狹長狀態,使離子極化在 c 軸方向作用更大,極化量增加。另外,推測介電常數與晶格內,A、B-site陽離子偏離周圍氧離子中心的距離及陽離子空間的大小相關。在共振頻率溫度係數部分,發現其與 c-a ratio 及介電係數變化的趨勢一致,但目前影響的機制不明。
Ba5Nb4O15 ceramics with high permittivity (εr), high quality factor (Q), and low temperature coefficient of resonators frequency (τf), are investigated on microwave dielectric materials extensively. However, most papers focus on the relationships between microwave properties and extrinsic parameters (second phase, density etc.), few published papers investigates the phenomena between intrinsic parameters and dielectric properties at microwave frequency.
In this investigation, we dope Sr2+ into Ba5Nb4O15 to form (Ba(1-x)Srx)5Nb4O15 solid solution system to discuss the relation between crystal structure and microwave dielectric property.
Depending on the result, the dielectric constant is in direct proportion to the cell parameter c-a ratio. Otherwise, the dielectric constant is related to the space of the A, B-site cation and the distance of the A, B-site cations diverge from the center of nearby oxygen ions. For the temperature coefficient of resonators frequency, it is in direct proportion to the cell parameter c-a ratio and dielectric constant, but the mechanism is ambiguous.
[1] 劉適嘉,Ba[ZrxZn(1-x)/3Nb2(1-x)/3]O3 介電陶瓷之微波特性及其應用,國立成功大學電機工程研究所碩士論文,2001。
[2] S. Kamba, J. Petzelt, D. Haubrich, P. Vanek, P. Kuzel, I. N. Jawahar, M. T. Sebastian, and P. Mohanan, “High frequency dielectric properties of A5B4O15 microwave ceramics,” J. Appl. Phys., 89, 3900-3906, 2001.
[3] I.N. Jawahar, P. Mohanan, and M.T. Sebastian, “A5B4O15 (A=Ba, Sr, Mg, Ca, Zn; B= Nb, Ta) microwave dielectric ceramics,” Materials Lett., 57, 4043-4048, 2003.
[4] F. Galasso and L. Katz, “Preparation and structure of Ba5Ta4O15 and related compounds,” Acta Cryst., 14, 647-650, 1961.
[5] T. Hahn, International tables for crystallography volume A: space-group symmetry, 2nd Ed., D. Reidel publishing company, Dordrecht, 1987.
[6] R. Ratheesh, H. Sreemoolanadhan, and M. T. Sebastian, “Vibrational analysis of Ba1-xSrxNb4O15 microwave dielectric ceramic resonators,” J. Solid State Chem., 131, 2-8, 1997.
[7] J. Shannon and L. Katz, “A refinement of the structure of barium tantalum oxide, Ba5Ta4O15,” Acta Cryst., B26, 102-105, 1975.
[8] J. L. Hutchinson and A. J. Jacobson, “Electron microscope of the perovskite-related phases 4H Ba0.1Sr0.9MnO2.96, 5H Ba5Nb4O15 and 6H BaFeO2.79,” J. Solid State Chem., 20, 417-422, 1977.
[9] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, 2nd Ed., John Wiley and Sons, New York, 1976.
[10] C. G. Bergeron and S. H. Risbud, Introduction to phase equilibria in ceramics, The American Ceramic Society Inc., Columbus, 1984.
[11] O. Muller and R. Roy, The major ternary structural families, Springer, New York, 1974.
[12] A. M. Glazer, “The classification of tilted octahedra in perovskite,” Acta Cryst, B28, 3384-92, 1972.
[13] A. M. Glazer, “Simple Ways of Determining Perovskite Structure,” Acta Cryst, A31, 756-62, 1975.
[14] E. L. Colla, I. M. Reaney, and N. Setter, “Effect of structural changes in complex perovskite on the temperature coefficient of the relative permittivity,” J. Appl. Phys., 74 [5], 3414-25, 1993.
[15] I. M. Reaney, E. L. Colla, and N. Setter, “Dielectric and structural characteristics of Ba- and Sr-based complex perovskite as a function of tolerance factor,” Jpn. J. Appl. Phys., 33, 3984-90, 1994.
[16] P. L. Wise, I. M. Reaney, W. E. Lee, T. J. Price, D. M. Iddles, and D. S. Cannell, “Structure-microwave property relations of Ca and Sr titanates,” J. Euro. Ceram. Soc., 21, 2629-32, 2001.
[17] 吳朗,電子陶瓷,全欣科技圖書,1994。
[18] D. K. Cheng, Field and wave electromagnetic, Addison Wesley, Mass., 407-412, 1989.
[19] D. Kajfez, “Computed modal field distribution for isolated dieletric resonators,” IEEE. Trans. MTT, MTT-32, 1609-1616, 1984.
[20] D. Kajfez, “Basic principle give understanding of dielectric wave-guides and resonators,” Microwave System News, 13, 152-161, 1983.
[21] D. Kajfez and P.Guillon, Dielectric Resonators, 1989.
[22] C. Y. Huang, Thermal expansion behavior of sodium zirconium phosphate structure type materials, Ph. D. thesis, The Pennsylvania State University, U. S. A., 1990.
[23] A. C. Larson and R. B. Von Dreele, General structure analysis system, Los Alamos National Laboratory, Los Alamos, 1988.
[24] 黃恩萍,角閃石類礦物之拉曼光譜研究,國立成功大學地球科學研究所碩士論文,2003。
[25] 王俊傑,ZnNb2O6 介電陶瓷材料燒結與微波特性之研究,國立成功大學電機工程研究所碩士論文,2003。
[26] M. M. Elcombe, E. H. Kisi, K. D. Hawkins, T. J. White, P. Goodman, and S. Matheson, “Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7,” Acta Cryst., B47, 105-314, 1991.
[27] Y. Fujimori, N. Izumi, T. Nakamura, and A. Kamisawa, “Application of Sr2Nb2O7 family ferroelectric films for ferroelectric memory field effect transistor,” Jpn. J. Appl. Phys., 37, 5207, 1998.