簡易檢索 / 詳目顯示

研究生: 黃柏霖
Huang, Bo-Lin
論文名稱: 氣態氘化鈉分子21Π電子能態的光譜研究
Spectroscopic Study of the NaD 21Π State
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 98
中文關鍵詞: 氘化鈉分子21Π能態雙光子共振螢光減量光譜法
外文關鍵詞: Sodium deuteride, 21Π state, Optical-optical double resonanc
相關次數: 點閱:161下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用固態雷射Nd-YAG當作激發光源,將雷射導入兩套染料雷射系統,共用到三種光譜法,分別為激發光譜、雷射誘導光譜與雙光子共振螢光減量光譜,一步步確認實驗的狀態與條件,其中利用疊加式雙光子共振螢光減量光譜來研究氘化鈉分子的21Π電子能態,設計出電子的躍遷模式:
    X1S+(v"1,J"1) → A1S+(v',J')+hυ1 (pump)(選擇率J'=J"±1)
    A1S+(v',J') → 21Π(v,J)+hυ2 (probe) (選擇率J=J',J'±1)
    A1S+(v',J') → X1S+(v"2,J"2)+hυ3 (fluorescence)
    實驗中選擇氘化鈉中間態A1S+的振動能階v’=15、16,且利用不同中間態來比對光譜的振轉能階訊號,現階段分析出21Π電子能態v*(J=1~6)、v*-1(J=1~8)、v*-2(J=1~10)等共24個振轉能階,轉動常數Bv值介在0.296~0.569 cm-1,振動能階能量差ΔGv+1/2為21.54與45.67 cm-1。
    由於目前並沒有關於氘化鈉21Π電子能態的文獻,可從幾篇氫化鈉21Π電子能態的文獻著手,利用同位素位移法與本實驗的數據相互探討。本論文擬合出一套氘化鈉21Π電子能態的分子常數,求得谷底值Te=44335.05 cm-1,ωe=248.14 cm-1,Be=1.57 cm-1,並修正RKR結果,獲得氘化鈉21Π電子能態的位能曲線,最後利用法蘭克-康登因子來確認絕對振動量子數。

    The purpose of the study was to observe the 21Π state of the NaD. The second and third harmonic of Nd-YAG served as the pumping source to pump first and second dye laser. By means of three kinds of spectra, included excitation spectroscopy, laser-induced fluorescence spectroscopy (LIF), and especially for Stepwise type optical-optical double resonance (OODR). The design of electronic transitions for the 21Π state of the NaD were summarized below:
    X1S+(v"1,J"1) → A1S+(v',J')+hυ1 (pump)(selection rule J'=J"±1)
    A1S+(v',J') → 21Π(v,J)+hυ2 (probe)(selection rule J=J' ,J'±1)
    A1S+(v',J') → X1S+(v"2,J"2)+hυ3 (fluorescence)
    We used different the vibrational energy level of A1Σ+ state to obtain 24 rovibrational levels of 21Π state, v*(J=1~6)、v*-1(J=1~8) and v*-2(J=1~10). The study findings revealed a set of Dunhum coefficient via isotope shift in comparison to experimental data. In this work, we got Te=44335.05 cm-1, ωe=248.14 cm-1, Be=1.57 cm-1, and the modified potential energy curve of NaD 21Π state.

    表目錄 X 圖目錄 XI 第一章 緒論 1 1-1 前言與研究動機 1 1-2 氘化鈉分子的研究進程 6 1-3 氫化鈉分子21Π能態之文獻回顧 9 第二章 理論 13 2-1 雙原子分子的波函數 13 2-2 分子常數推導 14 2-3 雙原子分子的電子項符 17 2-4 罕德耦合(Hund’s coupling cases) 18 2-5 耦合分離(Uncoupling phenomenon) 19 2-6 選擇率(Selection rule) 20 2-7 分子躍遷強度 21 2-8 Rydberg-Klein-Ress(RKR)位能曲線 24 2-9 同位素位移 (Isotope shift) 25 第三章 實驗 28 3-1 實驗儀器裝置 28 3-1-1 雷射系統 28 3-1-2 熱管爐(Heatpipe oven), 30 3-1-3 偵測訊號系統 31 3-1-4 校正雷射波長 33 3-2 實驗藥品及染料 35 3-2-1 藥品 35 3-2-2 染料 35 3-3 實驗用的光譜法 37 3-3-1 激發光譜法(Excitation spectroscopy) 37 3-3-2 雷射誘導螢光光譜法(LIF) 38 3-3-3 雙光子共振螢光減量光譜法(OODR) 40 3-4 操作實驗達最佳化(實驗技巧) 44 3-4-1 雷射品質 44 3-4-2 光路調整 44 3-4-3 解決螢光微弱的方法 45 第四章 結果與討論 46 4-1 四、待完成實驗雷射波長校正 46 4-1-1 第一道染料雷射的校正 47 4-1-2 第二道染料雷射的校正 48 4-2 確認氣態氘化鈉的存在 49 4-3 氣態氘化鈉分子21Π能態的偵測 50 4-3-1 實驗結果 50 4-3-2 21Π能態訊號確認 53 4-3-3 21Π數據分析 57 4-3-4 Dunham 分子常數 58 4-3-5 振動常數Gv與轉動常數Bv 61 4-3-6 RKR位能曲線 63 4-3-7 法蘭克-康登因子(Franck-condon factor簡稱FCF) 68 4-3-8 氘化鈉21Π其它範圍的觀測 71 4-3-9 Λ簡併態的e/f parity對振轉能階的影響 74 4-4 待完成工作 75 第五章 結論 83 參考文獻 84 附錄 氘化鈉分子D1Σ+能態的研究成果 87

    1. C. H. Townes and A. L. Schawlow, Microwave spectroscopy: Courier Corporation, 2013.
    2. W. Demtröder, Laser spectroscopy: basic concepts and instrumentation: Springer Science & Business Media, 2013.
    3. B. K. Taylor and P. R. Newman, J. Chem. Phys., 118, 8770, 2003.
    4. 徐梅, 令狐荣锋, 吉世印, 宋晓书, 贵州教育学院学报, 9-12, 2007.
    5. E. S. Sachs, J. Hinze, and N. H. Sabelli, J. Chem. Phys., 62, 3377, 1975.
    6. M. Giroud and O. Nedelec, J. Chem. Phys., 73, 4151, 1980.
    7. F. B. Orth, W. C. Stwalley, S. C. Yang, and Y. K. Hsieh, J. Mol. Spectrosc., 79, 314, 1980.
    8. A. Dickinson, R. Poteau, and F. Gadéa,Journal of Physics B: Atomic, Molecular and Optical Physics, 32, 5451, 1999.
    9. F. Pesl, S. Lutz, and K. Bergmann,The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 10, 247-257, 2000.
    10. C. L. Yang, X. Zhang, and K. L. Han,Journal of Molecular Structure: THEOCHEM, 676, 209-213, 2004.
    11. H. Y. Huang, T. L. Lu, T. J. Whang, Y.-Y. Chang, and C.-C. Tsai, J. Chem. Phys., 133, 044301, 2010.
    12. T. Rivlin, L. Lodi, S. N. Yurchenko, J. Tennyson, and R. J. Le Roy,Monthly Notices of the Royal Astronomical Society, 451, 5153-5157, 2015.
    13. S. D. Walji, K. M. Sentjens, and R. J. Le Roy,The Journal of chemical physics, 142, 044305, 2015.
    14. S. Lochbrunner, M. Motzkus, G. Pichler, K. Kompa, and P. Hering,Zeitschrift für Physik D Atoms, Molecules and Clusters, 38, 35-40, 1996.
    15. R. Olson and B. Liu,The Journal of Chemical Physics, 73, 2817-2824, 1980.
    16. Y. Chang, "Optical-Optical Double Resonance of the NaH C1Σ+ state," Master thesis, National Cheng-Kung University, Taiwan, 2000.
    17. H. S. Lee, Y. S. Lee, and G. H. Jeung, Chem. Phys. Lett., 325, 46-52, 2000.
    18. M. Liao, "Absolute Vibrational Numbering of the NaH C1Σ+ State," Master thesis, National Cheng-Kung University, Taiwan, 2001.
    19. K. Wu, "Spectroscopic Study of the NaH C1Σ+ Higher and Lower Vibrational State Levels," Master thesis, National Cheng-Kung University, Taiwan, 2002.
    20. H. Y. Huang, Y. Y. Chang, M. H. Liao, K. L. Wu, T. L. Lu, Y. Y. Chang, C. C. Tsai, T. J. Whang, Chem. Phys. Lett., 493, 53-56, 2010.
    21. C. Yung, "Optical-Optical Double Resonance Spectroscopy of the NaH D1Σ+ State," Master thesis, National Cheng-Kung University, Taiwan, 2003.
    22. J. Chiang, "Spectroscopic Study of the NaH D1Σ+ Higher Vibrational State Levels," Master thesis, National Cheng-Kung University, Taiwan, 2004.
    23. Y. Hsiao, "Spectroscopic Study of the NaH D1Σ+ State in the Dissociation Limit and Double-Well Potential," Master thesis, National Cheng-Kung University, Taiwan, 2006.
    24. N. Khelifi, Journal of Russian Laser Research, 29, 274-287, 2008.
    25. N. Khelifi, The Journal of Physical Chemistry A, 113, 8425-8433, 2009.
    26 R. Olson and M. Kimura, Physical Review A, 32, 3092, 1985.
    27. T. Leininger, F. Gadéa, and A. Dickinson, Journal of Physics B: Atomic, Molecular and Optical Physics, 33, 1805, 2000.
    28. H. C. Lin, Spectroscopic Study of the NaH 21Π State. Master thesis, National Cheng-Kung University, Taiwan, 2007.
    29. M. Aymar, J. Deiglmayr, and O. Dulieu, Can. J. Phys., 87, 543-556, 2009.
    30. G. Herzberg, New York: Van Nostrand Reinhold, 2nd ed., 1, 1950.
    31. C. E. Moore, Vol. III.
    32. P. Barklem, A. Belyaev, M. Guitou, N. Feautrier, F. Gadéa, and A. Spielfiedel,
    Astronomy & Astrophysics, 530, A94, 2011.
    33. K. Sastry, E. Herbst, and F. C. De Lucia, J. Chem. Phys., 75, 4753-4757, 1981.
    34. 岳莉, 吴位巍, 令狐荣锋, 杨向东,西南大学学报 (自然科学版) , 9, 015, 2007.
    35. C. Chu, "The Excitation Spectroscopy of the NaD X-A Transitions and the Synthesis of ZnS Nanoparticles," Master thesis, National Cheng-Kung University, Taiwan, 2011.
    36. Y. Li, "Laser Spectroscopic Study of the NaD First Excited Singlet State and Parts of the Ground State," Master thesis, National Cheng-Kung University, Taiwan, 2012.
    37. M. Lin, "Study of the gas phase NaD C1Σ+ state by OODR depletion spectroscopy," Master thesis, National Cheng-Kung University, Taiwan, 2013.
    38. S. E. Cheng, Spectroscopic Study of the C1Σ+ High Vibrational Levels in Gaseous Sodium Deuteride molecules. Master thesis, National Cheng-Kung University, Taiwan, 2014.
    39. R. S. Lin, Study of the NaD X1Σ+ State and Part of D1Σ+ State by OODR Depletion Spectroscopy. Master thesis, National Cheng-Kung University, Taiwan, 2014.
    40. W. F. He, Spectroscopic study for the ground state of NaD near dissociation limit. Master thesis, National Cheng-Kung University, Taiwan, 2015.
    41. C. Banwell and E. M. McCash, "Fundamentals of molecular spectroscopy." ed: The McGraw-Hill Companies, 1994.
    42. D. A. McQuarrie, Quantum chemistry: University Science Books, 2008.
    43. Z. G. Wang and H.-R. Xia, Molecular and laser spectroscopy vol. 50: Springer Science & Business Media, 2012.
    44. 林三寶, 雷射原理與應用, 全華圖書, 台北市, 2009.
    45. P. Sorokin, J. R. Lankard, E. C. Hammond, and V. L. Moruzzi, IBM Journal of Research and Development, 11, 130-148, 1967.
    46. C. Vidal, J. Appl. Phys., 44, 2225-2232, 1973.
    47. S. Gerstenkorn and P. Luc, Rev. Phys. Appl, 14, 791-794, 1979.
    48. H. Salami and A. J. Ross, J. Mol. Spectrosc., 233, 157-159, 2005.
    49. H. M. Crosswhite, Washington: National Bureau of Standards (NBS), 1975, vol. 1, 1975.
    50. E. Saloman and C. J. Sansonetti, J. Phys. Chem. Ref. Data, 33, 1113-1158, 2004.
    51. S. Varaganti, M. Gessesse, S. O. Obare, and G. Ramakrishna, "Dynamics and two-photon absorption properties of chromophore functionalized semiconductor nanoparticles," in SPIE Photonic Devices Applications, 2009, 741309-741309-10.
    52. K. L. Tsai and T. J. Whang, J. Chin. Chem. Soc., 45, 23-26, 1998.
    53. B. Edlén, Metrologia, 2, 71, 1966.
    54. P. Juncar, J. Pinard, J. Hamon, and A. Chartier, Metrologia, 17, 77, 1981.
    55. Y. L. Huang, W. T. Luh, G. H. Jeung, and F. X. Gadéa, J. Chem. Phys., 113, 683-689, 2000.

    無法下載圖示 校內:2021-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE