簡易檢索 / 詳目顯示

研究生: 鄭勝隆
Jeng, Sheng-Long
論文名稱: 鎳基690合金與SUS 304L不銹鋼異種金屬銲接特性與微結構研究
Microstructure and Characteristics of the Dissimilar Welding of Nickel-based Alloy 690 to SUS 304L
指導教授: 李驊登
Lee, Hwa-Teng
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 150
中文關鍵詞: Nb異種金屬銲接SUS 304L鎳基690合金碳化物氮化物GTAWTi微結構SMAW
外文關鍵詞: Nb, Ti, SMAW, GTAW, dissimilar welding, SUS 304L, nickel-based alloy 690, carbide, nitride, microstructure
相關次數: 點閱:164下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎳基690合金具有極佳的耐蝕能力,而常被用於能源、化學等工業中,因此,其異種金屬銲件也具有極大的使用潛力。本研究在探討鎳基690合金與SUS 304L不銹鋼之異種金屬銲接特性與微結構。研究中鎳基690合金與SUS 304L不銹鋼異種金屬銲件先在gas tungsten arc welding (GTAW)製程中,使用Inconel filler metal 52與Inconel filler metal 82 (52, 82),以比較兩者在組織、機械性能與抗蝕能力;之後再以shield metal arc welding製程進行異種金屬銲接,銲條為參考Inconel welding electrode 152成份,使用52為心線,藉由改變塗料的Nb與Ti含量,來改變銲條成份(Nb: 0.1~3.35wt-%, Ti: 0.09~0.91wt-%),分析Nb與Ti兩者對銲道組織、機械性質與耐蝕性能的影響。
    研究結果顯示G-82銲件因銲接速度較快,總入熱量較低,銲道組織為柱狀枝晶,有較多枝晶間組織,為富Nb組織、富Ti組織與細小的TiN與(Ti,Nb)N顆粒;G-52銲道組織是以胞狀晶為主,含富Ti的枝晶間組織與細小TiN顆粒,而其銲根有碳化鉻明顯析出,但整體上,晶界附近的鉻含量仍較高。機械性質上,G-82的銲道硬度、抗拉強度與延伸率均較G-52佳,兩者的拉伸斷口皆呈延性,其中G-82斷在鎳基690合金,而G-52則斷在銲道; G-52則具有較佳的抗沿晶腐蝕能力,枝晶間與晶界為兩銲道的主要腐蝕位置。
    改變Nb與Ti含量的研究顯示,Nb的增加促使銲道組織而由胞狀晶轉變為柱狀枝晶與等軸枝晶,二次臂與枝晶間組織也隨之長出與增加,低Nb試件之銲冠含Al-Ti氧化物,銲根有晶界碳化物明顯析出;高Nb試件的銲冠含Nb3Ni2Si與較大的富Nb組織,銲跟則有細小(Nb,Ti)CN顆粒與較小富Nb組織。Ti增加則使銲道外觀與銲接作業性皆隨之變差,所有試件的銲道組織皆相同—為等軸枝晶,銲冠枝晶隨Ti添加量而細化,此外,銲道含Al-氧化物、富Nb組織與(Nb,Ti)C,這些物質的Ti含量隨添加量而增加,銲根則無晶界碳化鉻析出。
    機械性質變化上, Nb明顯提升銲冠硬度,但卻會降低銲件延伸率,其微觀斷口趨向枝晶間脆裂,中間添加的Nb具有較佳的抗沿晶耐蝕能力,低Nb與高Nb各自出現明顯晶界與枝晶間的腐蝕;添加Ti可增加銲道硬度與延伸率,微觀斷口之韌窩隨之變為細密,沿晶腐蝕試驗顯示銲道的腐蝕形貌會由相連狀轉變為較密的圓點狀。

    Nickel-based alloy 690 has superior corrosion resistance. It is commonly employed in energy and chemical industries, and thus is used frequently in applications requiring dissimilar welding. This study investigates the characteristics and microstructure of dissimilar welding of nickel-based alloy 690 to SUS 304L. First, 690/304 dissimilar weldments performed with gas tungsten arc welding (GTAW) using Inconel Filler Metal 52 and Inconel Filler Metal 82 (52, 82) are compared for microstructure, mechanical properties and corrosion resistance. Then, 690/304 dissimilar weldments performed with shield metal arc welding (SMAW, based on the Inconel Welding Electrode 152, welding electrodes using 52 as core wire and changing the flux for different Nb and Ti content, Nb 0.1~3.35wt-pct, Ti 0.09~0.91 wt-pct.) are further analyzed for Nb and Ti content effects on microstructure, mechanical properties and corrosion resistance.
    Results indicate that the G-82 weldment has a lower total heat input than the G-52 due to higher welding speed, with a columnar dendritic fusion zone (FZ) microstructure containing many interdendritic phases consisting of Ti-rich and Nb-rich phases and also tiny TiN and (Ti,Nb)N particles. The G-52 FZ microstructure is mainly cellular, comprising Ti-rich phase and tiny TiNs. Although the G-52 root contains obvious Cr-carbide precipitates, the Cr content near the grain boundary is higher than the G-82 as a whole. Mechanical property test indicates that G-82 has higher FZ hardness, tensile strength and pct. elongation. Fracture shows that G-52 and G-82 rupture ductily at fusion zone and alloy 690, respectively. Intergranular corrosion resistance is better for G-52.
    Results of Nb and Ti content show that Nb makes FZ microstructural change from cellular to columnar dendritic and equiaxed dendritic, with second dendritic arm space growing and interdendritic phase increasing. In low-Nb FZ, the cap contains Al-Ti oxides, and root has extensive Cr-carbides on grain boundaries. In high-Nb FZ, the cap has Nb3Ni2Si and over 10mm Nb-rich phase while the root has large Nb-rich phases with 50 nm (Nb,Ti)CNs. Ti addition changes the weldment appearance and reduces welding operational feasibility. All tested Ti weldments have equiaxed dendritic microstructure that shows finer cap structure with Ti increase. The FZ contains Al-oxides, Nb-rich phase and (Nb,Ti)C and Ti content of those materials also increases with Ti addition. Grain boundaries show little Cr-carbide precipitation.
    Nb addition increases cap hardness, reduces weldment elongation, and changes the fracture surface to fragile rupture at interdendritic regions. An intermediate level of Nb gives the best corrosion resistance, low-Nb showing obvious grain boundary corrosion and high-Nb showing obvious interdendritic corrosion. Ti addition increases both FZ hardness and elongation, and fractures surface dimples become smaller and denser. With Ti addition, linked-hole corrosion changes to pitting.

    摘要 I 英文摘要 II 誌謝 III 總目錄 IV 表目錄 VII 圖目錄 VIII 符號與簡寫表 XIII 第一章 前言與文獻回顧 1 1.1 前言 1 1.2 文獻回顧 2 第二章理論基礎 6 2.1 異種金屬銲接 6 2.1.1 母材的選擇 6 2.1.2 銲材的選擇 7 2.1.3 銲接方法 7 2.1.4 合金稀釋容忍度與計算母材稀釋率 8 2.1.5 異種金屬銲接的要求 8 2.2 銲接材料 10 2.2.1 SUS 304L不銹鋼 10 2.2.2 鎳基690合金 14 2.2.3 鎳基690合金適用的銲材 23 2.2.4 Schaeffler圖 24 2.3 凝固理論 25 2.3.1 熔融區與熱影響區的定義 25 2.3.2 熔融區組織 26 2.4 合金元素的作用與添加影響 30 2.4.1 添加Nb元素的影響 30 2.4.2 添加Ti元素的影響 32 2.4.2 添加Nb與Ti元素的相互影響 33 第三章 實驗方法與步驟 36 3.1 實驗流程 36 3.2 材料 36 3.2.1 母材 36 3.2.2 銲材 39 3.3 銲接試驗 39 3.3.1 銲接試件尺寸 39 3.3.2 GTAW銲接 41 3.3.3 SMAW銲接 41 3.3.4 銲件檢測 44 3.4 微結構分析與機械性質測試 44 3.4.1 金相觀察 44 3.4.2 微結構分析與試片製備 45 3.4.3 硬度試驗 46 3.4.4 拉伸測試 46 3.4.5 斷口分析 47 3.4.6 腐蝕實驗 47 第四章 結果與討論 48 4.1 52與82之銲接性質分析(GTAW) 48 4.1.1 銲接作業性 48 4.1.2 母材與熱影響區域 50 4.1.3 銲道組織 53 4.1.4 結構組織分析(TEM) 58 4.1.5 機械性質試驗 71 4.1.6 腐蝕試驗 74 4.1.7 綜合討論 77 4.2在銲藥中改變銲條Nb含量之銲接性質分析(SMAW) 80 4.2.1 銲接作業性 80 4.2.2 銲道組織 81 4.2.3 結構組織分析(TEM) 91 4.2.4 組織綜合討論 92 4.2.5 機械性質 103 4.2.6 腐蝕試驗 107 4.2.7 綜合討論 107 4.3在銲藥中改變銲條Ti含量之銲接性質分析(SMAW) 112 4.3.1 銲接作業性 112 4.3.2 銲道金相 114 4.3.3 結構組織分析(TEM) 120 4.3.4 組織綜合討論 130 4.3.5 機械性質試驗 131 4.3.6 腐蝕實驗 136 4.3.7 綜合討論 139 第五章 結論與建議 141 參考文獻 145

    1. R.A. Page,” Stress Corrosion Cracking of Alloy 600 and 690 and Weld Metals No. 82 and No.182 in High-Temperatue Water,” EPRI-Report, No. NP-2617, 1982.
    2. G.J. Theus and R.H. Emanuelson,” Stress Corrosion Cracking of Alloy 600 and Alloy 690 in All Volatile Treated Water at Elevated Temperature,” EPRI-Report, No. NP-3061, 1983.
    3. P.M. Scott, “ a Review of Environment-Sensitivite Fracture in Water Reactor Materials, “ Corrosion Science, Vol.25, No.8/9, pp.583-606, 1985.
    4. W.C. Morgan and J.V. Livingston,” A Review of Information Useful for Managing Aging in Nuclear Power Plants,” Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Report, Contract No. DE-AC06-76RLO 1830 NRC FIN B2865, 1997.
    5. 梁仲賢, “壓水式核反應器材料的腐蝕與防治對策,” 核研季刊, 26期, 8-12, 1999。
    6. B.P. Miglin and G.J. Theus,” Stress Corrosion Cracking of Alloy 600 and 690 in All-Volatile-Treated Water at Elevated Temperatures,” EPRI-Report, NP-5761M, 1988.
    7. R.A. Page and A. McMinn,” Stress Corrosion Cracking Resistance of Alloys 600 and 690 and Compatible Weld Metals in BWRs,” EPRI-Report, NP-1566-1, 1988.
    8. D. Gomez-Briceno, F. Blazquez and F. Hernandez, “Influence of Product Type on Stress Corrosion Cracking of Alloy 600,” Corrosion, Vol.55, No.3, pp.248-258, 1999.
    9. G.S. Was, “Grain-Boundary Chemistry and Intergranular Fracture in Austenitic Nickel-Base Alloys - A Review,” Corrosion, Vol.46, No.4, pp.319-330, 1990.
    10. K. Stiller, J.O. Nilsson and K. Norring, “Structure, Chemistry, and Stress Corrosion Cracking of Grain Boundaries in Alloys 600 and 690,” Metallurgical and Materials Transactions A, Vol.27A, pp.327-341, 1996.
    11. G.S. Was and K. Lian, “Role of Carbides in Stress Corrosion Cracking Resistance of Alloy 600 and Controlled-Purity Ni-16% Cr-9% Fe in Primary Water at 360℃,” Corrosion, Vol.54, No.9, pp.675-688, 1998.
    12. B.W. Brisson R.G. Ballinger and A.R. Mcllree, “Intergranular Stress Corrosion Cracking Initiation and Growth in Mill-Annealed Alloy 600 Tubing in High-Temperature Caustic,” Corrosion, Vol.54, No.7, pp.504-514, 1998.
    13. R. Rios, T. MagNin, D. Noel and O. de Bouvier, “Critical Analysis of Alloy 600 Stress Corrosion Cracking Mechanisms in Primary Water,” Metallurgical and Materials Transactions A, Vol.26A, pp.925-939, 1995.
    14. J.K. Sung, “Effect of Heat treatment on Caustic Stress Corrosion Cracking Behavior of Alloy 600,” Corrosion, Vol.55, No.12, pp.1144-1154, 1999.
    15. K. Yamanaka, K. Ogawa, K. Kobayashi and S. Nagata, “Development of High Corrosion Resistance Alloy 600 with Niobium Addition,” The Sumitomo Search, No.51, 1-15, 1993.
    16. Y.S. Lim, J.S. Kim and H.S. Kwon, “Effects of Sensitization Treatment on the Evolution of Cr Carbides in Rapidly Solidified Ni-base Alloy 600 by a CO2 Laser Beam,” Materials Science and Engineering, A279, pp.192-200, 2000.
    17. Y.S. Kim, J.H. Suh, I.H. Kuk and J.S. Kim, “Microscopic Investigation of Sensitized Ni-Base Alloy 600 after Laser Surface Melting,” Metallurgical and Materials Transactions A, Vol.28A, No.5, pp.1223-1231, 1997.
    18. J.K. Shin, J.H. Suh, J.S. Kim and S.J.L. Kang,” Effect of Laser Surface Modification on the Corrosion Resistance of Alloy 600,” Surface and Coating Technology, Vol. 107, pp.94-100, 1998.
    19. Y.S. Lim, J.S. Kim and H.S. Kwon,” Particle Formation in the Rapidly Solidified Zone of Alloy 600 Surface Melted by a CO2 Laser Beam,” Metallurgical and Materials Transactions A, Vol.32A, No.5, pp. 1248-1251, 2001.
    20. R.E. Gold, D.L. Harrod R.G. Aspden and A.J. Baum,” Alloy 690 for Steam Generator Tubing Applications,” EPRI-Report, NP-6997-M, 1990.
    21. “Inconel 690,” http://www.specialmetals.com/publication/by_category_inconel.htm, 2003.
    22. H. Nagano, K. Yamanaka, K. Kobayashi and M. Inoue, “Development and Manufacturing System od Alloy 690 Tubing for PWR Steam Generators,” The Sumitomo Search, No.40, pp.57-70, 1989.
    23. R.A. Page and A. McMinn, “Relative Stress Corrosion Susceptibilities of Alloys 690 and 600 in Simulated Boiling Water Reactor Environments,” Metallurgical and Materials Transactions A, Vol.17A, pp.877-887, 1986.
    24. J.R. Crum, “Stress Corrosion Cracking Testing of Inconel Alloys 600 and 690 Under High-Temperature Caustic Conditions,” Corrosion, Vol.42, No.6, pp.368-372, 1986.
    25. C.R. Bergen, “Sodium Silicates___Stress Corrosion Cracking Agents for Alloys 600 and 690 at 315℃,” Corrosion, Vol.41, No.2, pp.85-88, 1985.
    26. R.S. Dutta and R.Tewari,” Microstructural and Corrosion Aspects of Alloy 690,” British Corrosion Journal, Vol.34 (No.3), pp.201-205, 1999.
    27. C.M. Brown and W.J. Mills, “Effect of Water on Mechanical Properties and Stress Corrosion Behavior of Alloy 600, Alloy 690, EN82H and EN52 Welds,” Corrosion, Vol.55, No.2, pp. 173-186, 1999.
    28. W.A. VanDerSluys, B.A. Young, D. Doyle,” Corrosion Fatigue Properties on Alloy 690 and Some Nickel-Based Weld Metals,” the ASME Pressure Vessel and Piping Conference, Seattle, Washington, 2000.
    29. G.P. Yu and H.C. Yao, “The Relation between the Resistance of IGA and IGSCC and the Chromium Depletion of Alloy 690,” Corrosion, Vol.46, No.5, pp.391-402, 1990.
    30. J.M. Sarver, J.R. Crum and W.L. Mankins, “Carbide Precipitation and SCC Behavior of Inconel Alloy 690,” Corrosion, Vol.44, No.5, pp.288-289, 1988.
    31. J.J. Kai, G.P. Yu, C.H. Tsai, M.N. Liu and S.C. Yao, “The Effects of Heat Treatment on the Chromium Depletion, Precipitate Evolution, and Corrosion Resistance of Inconel Alloy 690,” Metallurgical and Materials Transactions A, Oct., Vol.20A, pp.2057-2067, 1989.
    32. “ISOE Information Sheet — Occupational Exposure and Steam Generator Replacements,” ISOE CEPN Information Sheet No.1, 1994.
    33. G.R. Duff, ” Procedure For Welding Inconel to Inconel and Stainless Steel,” Atomic Energy of Canada Limited, CRNL Standard Weld-13, 1968.
    34. J.C. Thornley,” Effect of Heat Input on Properties of Inconel Filler Metal 82 Weld Deposits,” Wedling Journal, Vol.8, pp.355s-358s, 1973.
    35. R.A. Page, “Stress Corrosion Cracking of Alloys 600 and 690 and Nos. 82 and 182 Weld Metals in High Temperature Water,” Corrosion, Vol.39, No.10, pp.409-421, 1983.
    36. C.L. Briant and E.L. Hall, “The Microstructural Causes of Intergranular Corrosion of Alloys 82 and 182,” Corrosion, Vol.43, pp.539-548, 1987.
    37. W.J. Mills and C.M. Brown, “Fracture Toughness of Alloy 600 and an EN82H Weld in Air and Water,” Metallurgical and Materials Transactions A, Vol.32A, No.5, pp.1161-1174, 2001.
    38. W.T. Tsai, “ Stress Corrosion and Corrosion Fatigue Crack Growth Behaviors of Alloy 690 in Thiosulfate-containing Aqueous Environments,” The Report of NSC, R.O.C. 1996.
    39. J.T. Lee,” The Study of Pitting Corrosion on Alloy 690,” The report of NSC, R.O.C., 1996.
    40. 蘇子可等,”Inconel 690合金銲接特性之研究,”行政院原委會81年度研究報告, 1992。
    41. 郭聰源,”鎳基690合金銲接特性研究,” 國立成功大學博士論文,1999。
    42. 吳威德,”Inconel 690與SUS 304L銲接特性及應力分析研究,” 行政院原委會82年度研究報告, 1993。
    43. W.T. Wu,” Mechanical Behavior of Vibration-Arc-Welded Alloy 690,” Materials Transactions JIM, Vol. 40, no. 12, pp.1456-1460, 1999.
    44. W.T. Wu,” Mechanical Properties of Weldment Affected by Various Vibration Frequencies,” Journal of Materials Science Letters, Vol. 18, no. 22, pp.1829-1831, 1999.
    45. W.T. Wu and C.H. Tsai, “Hot Cracking Susceptibility of Fillers 52 and 82 in Alloy 690 Welding,” Metallurgical and Materials Transactions A, Feb., Vol.30A, 417-426,1999.
    46. 葉東昌,”鎳基690合金銲件之特性與組織改善研究,” 國立成功大學碩士論文, 1999。
    47. 杜青駿,”鎳基合金之銲接特性及銲道顯微組織分析之研究,” 國立成功大學碩士論文, 1997。
    48. 顏志軒,”銲料中添加不同Ti合金元素對鎳基690銲件之影響,” 國立成功大學碩士論文, 2001。
    49. 楊仲霖,”電子束銲接製程參素對690合金與304L不銹鋼異種銲接之影響,” 國立成功大學碩士論文, 2002。
    50. H.B. Cary,” Modern Welding Technology,” 4th, Prentice-Hall, New Jersey, 1998.
    51. V. Bicego, D. Robertson and D. Tice,” Performance of Dissimilar Metal Welds/ A survey of Practices and Needs,” Plan Members, Plan CT C3 Doc 01-01 Version 1, 2001.
    52. A. Fleming,” New Materials for High Temperature Service in Power Generation,” OMMI, Vol.1, pp.1-8, 2002.
    53. B.E. Payne, “Nickel-base Welding Consumables for Dissimilar Metal Welding Applications,” Metal Construction, Vol.1, No.12, pp.79-87, 1969.
    54. A.A. Omar, “Effects of Welding Parameters on Hard Zone Formation at Dissimilar Metal Welds,” Welding Journal, No.2, pp.86s-93s, 1998.
    55. S.W. Banovic, J.N. DuPont, A.R. Marder,” Dilution Control in Gas-Tungsten-Arc Welds Involving Superaustenitic Stainless Steels and Nickel-based Alloys,” Metallurgical and Materials Transactions B, Vol.32, pp. 1171-1176, 2001.
    56. C.D. Lundin, “Dissimilar Metal Welds___Transition Joints Literature Review,” Welding Journal, No.2, pp.58s-63s, 1982.
    57. L. Karlsson, “Welding of Dissimilar Metals,” Welding in the World, Vol.36, pp.125-132, 1995.
    58. W.F. Savage, E.F. Nipples and G.M. Goodwin, “Effect of Minor Elements on Fusion Zone Dimensions of Inconel 600,” Welding Journal, No.4, pp.126s-132s, 1977.
    59. Y. Araki, H. Sano, M. Kominami and H. Oikawa, “Study on the Cr-Ni Austenitic Filler Metal Containing Mn,” Transactions of the Japan Welding Society, Vol.13, No.2, 1982.
    60. ASM, ” Metal Handbook,” 10th Edition, Vol.2, 1990.
    61. C.T. Sims, N.S. Stoloff and W.C. Hagel, “Superalloys II,” Wiley, New York, 1987.
    62. “Joining,” http://www.specialmetals.com/publication/by_category_generalinfo.htm, 2003.
    63. “ Welding Dissimilar Metals,” http://www.wisconsinwireworks.com/applications.htm, 2003.
    64. “High-Performance Alloys for Resistance to Aqueous Corrosion,” http://www.specialmetals.com/publication/by_category_generalinfo.htm, “2003.
    65. 王繼敏, ”不銹鋼與金屬腐蝕,” 科技圖書股份有限公司, 1990年11月。
    66. M.J. Cieslak and W.F. Savage,” Weldability and Solidification phenomena of Cast Stainless steel,” Welding Journal, Vol. 59, pp.136s-146s, 1980.
    67. J.M. Vitek and S.A. David,” Microstructural Modification of Austenitic Stainless Steels by Rapid Solidification,” Metallurgical and Materials Transactions A, Vol. 14A, pp. 1833-1841, 1983.
    68. C.D. Lundin and C.P.D. Chou,” Fissuring in the “ Hazard HAZ” Region of Austenitic Stainless Steel Welds,” Welding Journal, Vol.64, pp. 113s-118s, 1985.
    69. S. Venugopal, S.L. Mannan and P. Rodriguez,” Optimal Design of a Hot Extrusion Process for AISI Type 304L Stainless Steel Using a Model for the Evolution of Microstructure,” Modeling and Simulation in Material Science and Engineering, 10(3), pp.253-265, 2002.
    70. H.U. Hong, B.S. Rho and S.W. Nam,” A Study on the Crack Initiation and Growth from δ-ferrite/γ-phase under Continuous Fatigue and Creep-Fatigue Conditions in type 304L Stainless Steels,” International Journal of Fatigue, 24(10), pp.1063-1070, 2002.
    71. O.V. Akgum, M. Urgen, A.F. Cakir,” The Effect of Heat Treatment on Corrosion Behavior of Laser Surface Melted 304L Stainless Steel,” Materials Science and Engineering A, 203(1), pp.324-331, 1995.
    72. S. Kou,” Welding metallurgy,” Wiley, New York, pp.179-187, 1987.
    73. K. Yamanaka, “Effect of Cr on Electrode Strain Behavior for High-Ni Alloys in Hot Caustic Solutions,” Corrosion Engineering, Vol.37, No.11, pp.605-612, 1988.
    74. K. Stiller, J.O. Nilsson and K. Norring, “Structure, Chemistry, and Stress Corrosion Cracking of Grain Boundaries in Alloys 600 and 690,” Metallurgical and Materials Transactions A, Vol.27A, pp.327-341, 1996.
    75. M. Thuvander and K. Stiller,” Evolution of Grain Boundary Chemistry in a Ni-17Cr-9Fe Model Alloy,” Materials Science and Engineering A, Vol.250, pp.93-98, 1998.
    76. H. Uno, A. Kimura and T. Misawa, “Effect of Nb on the Intergranular Precipitation Behavior of Cr Carbide in N-Bearing Austenitic Stainless Steels,” The Sumitomo Search, No.54, 48-55, 1993.
    77. R.T. Holt and W.Wallace,” Impurities and Trace Elements in Nickel-based Superalloys,” International Metals Reviews, March, pp.1-24, 1976.
    78. “電銲作業手冊,” 中船公司, 1994年6月。
    79. W.F. Savage, E.F. Nipples and G.M. Goodwin, “Effect of Minor Elements on Hot Cracking Tendencies of Inconel 600,” Welding Journal, No.8, pp.245s-253s, 1977.
    80. E. Folkhard etc.,” Welding Metallurgy of Stainless Steels,” Springer-Verlag, Wien, 1988.
    81. Y.S. Lim, J.S. Kim and H.S. Kwon, “Effects of Sensitization Treatment on the Evolution of Cr Carbides in Rapidly Solidified Ni-base Alloy 600 by a CO2 Laser Beam,” Materials Science and Engineering, A279, pp.192-200, 2000.
    82. J.W. Schultz and H.F. Merrick, “Constitution of the Ni-Cr-Fe System From 0 to 40 Pct Fe Including Some Effects of Ti, Al, Si, and Nb,” Metallurgical Transactions, Vol.3, No.9, pp.2479-2483, 1972.
    83. A.F. Padilha, M. Pohl and L.V. Ramanathan,” The Effect of Niobium Addition on the Microstructure of Fully Austenitic Fe-15%Cr-15%Ni Stainless Steels,” Prakt. Metallogr. Vol.31, No. 9, pp.436-447, 1994.
    84. J.N. DuPont, C.V. Robino, J.R. Michael, M.R. Nois and A.R. Marder, “Solidification of Nb-Bearing Superalloys: Part I. Reaction Sequences,” Metallurgical and Materials Transactions A, Nov., Vol.29A, pp.2785-2796, 1998.
    85. J.N. DuPont, C.V. Robino, A.R. Marder and M.R. Nois, “Solidification of Nb-Bearing Superalloys: Part II. Pseudoternary Solidification Surfaces,” Metallurgical and Materials Transactions A, Nov., Vol.29A, pp.2797-2806, 1998.
    86. J.N. DuPont, C.V. Robino and A.R. Marder, “Solidification and Weldability of Nb-Bearing Superalloys,” Welding Journal, Oct., pp.417s-431s, 1998.
    87. K. Hulka,” Characteristic Feature of Titanium, Vanadium and Niobium as Microalloy Additions to Steel,” Niobium Technical Information, NPC Gmbh, 49(211) 138 010. < http://www.us.cbmm.com.br>
    88. Y.D. He, Z.W. Li, H.B. Qi and W. Gao,” Standard Free Energy Change of Formation per Unit Volume: A New Parameter for Evaluating Nucleation and Growth of Oxides, Sulphides, Carbides and Nitrides,” Mat Res Innovat, Vol.1, pp. 157-160, 1997.
    89. S.G. Hong, K.B. Kang and C.G. Park,” Strain-induced Precipitation of NbC in Nb and Nb-Ti Microalloyed HSLA Steels,” Scripa Materialia, Vol. 46, pp.163-168, 2002.
    90. A.J. Craven, K. He, L.A.J. Garvie and T.N. Baker,” Complex Heterogeneous Precipitation in Titanium-Niobium Microalloyed Al-killed HSLA Steels–I. (Ti,Nb)(C,N) Particles,” Acta Materialia, Vol.48, pp.3857-3868, 2000.
    91. B. Piekarski,” Effect of Nb and Ti Additions on Microstructure, and Identification of Precipitates in Stabilized Ni-Cr Cast Austenitic Steels,” Materials Characterization, Vol.47, pp.181-186, 2001.
    92. L.H. Almeida, A.F. Ribeiro, and I.L. May,” Micorstructural characterization of Modified 25Cr-35Ni Centrifugally Cast Steel Furnace Tubes,” Materials Characterization, Vol.49, pp.219-229, 2003.
    93. R. Aspden,” Corrosion Performance of Alloy 690,” in Proc. Conf. ‘EPRI Alloy 690 Workshop 89’, Virginia, Section 2, p.3-1, 1989.
    94. H. T. Lee and T. Y. Kuo, “Analysis of microstructure and mechanical properties in alloy 690 weldments using filler metals I-82 and I-52, “ Science and Technology of Welding and Joining, Vol.4, No.2, pp.94-103, 1999.
    95. C. P. Chou, P. S. Wu,” Studies of Characteristics of Austenitic Stainless Steel Weld Metal Heat Affected Zone,” Chinese Journal of Materials Science, Vol.1, 18A, No.2, pp.47-59, 1986.
    96. M.J. Cieslak, T.J. Headley, T. Kollie and A.D. Romig, Jr.,” A Melting and Solidification Study of Alloy 625,” Metallurgical and Materials Transactions A, No.9, Vol.19A, pp.2319-2331, 1988.
    97. R. Kovacheva, R. Dafinova and Maria Stanimirova,” Metallographic Investigation of Transition Metals Nitrides,” Prakt. Metallogr. Vol. 33, No. 5, pp.247-255, 1996.
    98. I. Gowrisankar, A. K. Bhaduri, V. Seetharaman, D. D. N. Verma, D. R. G. Achar, “Effect of Number of Passes on the Structure and Properties of Submerged Arc Welds of AISI Type of 316L,” Welding Journal, Vol.66, No.5, pp.147s-154s, 1987.
    99. K. Yamanaka, K. Ogawa, K. Kobayashi and S. Nagata, “Development of High Corrosion Resistance Alloy 600 with Niobium Addition,” The Sumitomo Search, No.51, 1-15, 1993.
    100. C. Thaulow,” Structural Changes in Submerged-Arc Weld Metals of CMn Steels Containing Small Amount of Titanium,” International Conference London: Welding Pool Chemistry and Metallurgy, April, pp.17-29, 1980.

    下載圖示 校內:2006-07-28公開
    校外:2006-07-28公開
    QR CODE