| 研究生: |
徐碧治 Hsu, Pi-Chih |
|---|---|
| 論文名稱: |
降雨特性對洪水懸浮載濃度與懸浮載產砂量影響之研究 Impact of Rainfall Characteristics on Suspended Sediment Concentration and Sediment Yield during Storms |
| 指導教授: |
蔡長泰
Tsai, Chang-Tai |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 入滲量 、臨前降雨指數 、超滲雨量 、尖峯懸浮載濃度 、產砂量 、預測公式 、荖濃溪 、地文性土壤沖淤模式 |
| 外文關鍵詞: | Infiltration, antecedent precipitation index, excess rainfall, peak suspended sediment concentration, sediment yield, prediction formulas, Laonong River, PSED model |
| 相關次數: | 點閱:110 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
豪雨期間之高含砂濃度的洪水現象,影響水利設施與水資源利用。因為洪水之懸浮載輸運率與變量流水理性質有關,故流量-懸浮載率定曲線只代表一粗略的平均關係。應用集水區沖蝕及沉滓輸運數學模式可推測較可靠的懸浮載輸運率。但數學模式演算較為費時。故為降雨期間水資源利用之需要,應發展可迅速推測懸浮載濃度及產砂量的方法。
每一個集水區的地形、地貌、土壤、地質與水系分佈等地文特性造成該集水區獨特之降雨期間土壤沖淤與沉滓輸運特性,因此對特定之集水區在每一降雨事件過程中的懸浮載輸運與產砂量主要受降雨特性的影響,本研究旨在發展特定集水區降雨事件之降雨特性與懸浮載尖峯濃度與產砂量之關係,建立特定集水區降雨事件懸浮載尖峯濃度與產砂量之預測模式,以提供水利設施之運轉策略之研擬。
因降雨事件之雨量需超過初期損失量及入滲量,才會形成地表逕流沖蝕地表土壤挾運入河,本研究發展降雨期間以入滲係數及降雨強度計算入滲量的方法。由於土壤含水量影響入滲率,故由歷史降雨事件之臨前降雨指數 及水文站流量歷線之基流分離,可得出水文站集水區之 與入滲係數的關係式,並應用於預測降雨事件發生期間之集水區入滲係數及入滲率。
本研究由有關洪水期間之懸浮載量測報告推論影響降雨事件之懸浮載尖峯濃度之重要因子包括降雨事件之第一個尖峯降雨強度 、降雨沖蝕因子 及臨前降雨指數 ;由有關降雨事件之產砂量量測報告之檢討,推論影響降雨事件之懸浮載產砂量的重要因子包括降雨事件之降雨量 、懸浮載產砂量因子 及臨前降雨指數 。
本研究以高屏溪上游主流荖濃溪六龜水文站集水區為測試案例,探討上述懸浮載尖峯濃度及產砂量預測方法之實用性。因六龜站雖有流量歷線記錄,但沒有連續的懸浮載量測記錄,因此本研究應用地文性土壤沖淤模式模擬1998 -2004共9場降雨事件以檢定模式參數,並以1995與2001之2場降雨事件驗證模式參數之檢定結果,顯示地文性土壤沖淤模式及本研究發展之變動入滲率可有效模擬降雨期間之入滲率及洪流現象。
由上述9場檢定事件模擬之懸浮載輸運率歷線及產砂量之分析結果,檢定適用於六龜水文站之懸浮載尖峯濃度及產砂量之預測公式,進而以2場降雨事件驗證,顯示預測公式具有良好的實用性。發生於民國98年之莫拉克颱風豪雨,雖沒有流量記錄以驗證洪水流量模擬結果,但由模擬結果之懸浮載尖峯濃度及產砂量與預測公式預測值頗符合,顯示具有良好的實用性。
During storm events, high suspended sediment concentration in flood waters affects hydraulic facilities and use of water resources. As the suspended sediment transport rate is related to hydraulic properties of unsteady flows, the discharge-suspended sediment transport rate rating curve can only reflect an average relationship between them roughly. A more credible suspended sediment transport rate can be predicted by using mathematical models for erosion-deposition in catchments and sediment transport. In light of time-consuming calculations of these mathematical models, however, methods capable of estimating suspended sediment concentration and sediment yield rapidly should be developed to meet needs for use of water resources during storm events.
Catchments’ physiographical characteristics, including topography, landform, soil and stream patterns, lead to unique characteristics of soil-deposition and sediment transport in the catchments during storm events, therefore, for a specific catchment, the suspended sediment transport and sediment yield are mainly affected by rainfall characteristics during every storm event. This study is intended to develop a correlation of rainfall characteristics with suspended sediment peak concentration and sediment yield and to build a model for estimating suspended sediment peak concentration and sediment yield for a specific catchment during storm events, so as to assist in working out the operational strategies of hydraulic facilities.
During storm events, the rainfall will generate surface runoffs that scour the surface soil and bring the soil into rivers only after exceeding the initial loss and infiltration, thus, a method is developed in this study to estimate the infiltration by using infiltration coefficients and rainfall intensity. As soil moisture has impact on the infiltration rate, the relation between the antecedent precipitation index and the infiltration coefficient of catchments in an observation station can be concluded from in the past storm processes and base flow separation of the flow hydrograph of the observation station, and such relation can be used to predict the infiltration coefficient and infiltration rate of the catchments when storm events occur.
In this study, it is concluded from measurement reports on suspended sediment in storm processes that important factors affecting peak suspended sediment concentration also include the first peak rainfall intensity , rainfall erosion factor and antecedent precipitation index during storm events. Through examination of measurement reports of sediment yield during storm events, it is concluded that important factors that affect suspended sediment yield should include rainfall amount , suspended sediment yield factor and antecedent precipitation index during storm events.
This study focuses on the catchment of Liau-Kwei observation station along Laonong River — a mainstream in the upper reaches of Gaoping River—as a pilot example to explore applicability of the aforesaid methods for estimating peak suspended sediment concentration and sediment yield. Given that Liau-Kwei observation station has records of flow hydrograph but does not have continuous measurement records of suspended sediment, this study adopts the Physiographic Soil Erosion-Deposition Model to simulate nine storm events during 1998-2004 to examine the parameters used in the model, and selects two storm events occurring in 1995 and 2001 respectively to verify examination results of the parameters. The results show that the Physiographic Soil Erosion-Deposition Model and the variable infiltration rate developed in this study are effective in simulating infiltration rate and flooding during storm events.
Based on the above-mentioned analysis results of simulated suspended sediment transport rate hydrograph and sediment yield during the examined nine storm events, the study examines the prediction formulas applicable to peak suspended sediment concentration and sediment yield at Liau-Kwei observation station and verifies the formulas with two storm events, and the results indicate good applicability of these formulas. Though no flow measurement data is available to validate simulation results of flood flows for the storm event occurring during Typhoon Morakot in 2009, the prediction formulas still indicate good applicability as the relation between peak suspended sediment concentration and rainfall characteristics factors conforms to the prediction formulas, based on the simulation results.
1. 高屏溪流域管理委員會,「96年高屏溪流域管理工作執行年報」,第25頁,2008。
2. 台灣省水利局,「高屏溪治理規劃報告」,1981。
3. 經濟部水利署南區水資源局,曾文水庫水質調查及改善後計畫,2003。
4. 經濟部水利署南區水資源局,「曾文水庫集水區泥砂產量推估模式計劃」,2004。
5. 經濟部水利署南區水資源局,「高屏溪攔河堰高濁度缺水分析及改善策略檢討計劃」,台南,2007。
6. 王如意,「應用水文學」,中國土木水利工程學會1998。
7. 王毓麒,「分布型水文模式於消洪減災及未量測集水區逕流歷線之推估」,國立成功大學水利及海洋研究所博士論文,2006。
8. 王惟盈,「後龍溪河口水質與懸浮顆粒之調查與分析研究」,國立聯合大學防災科技研究所碩士論文,2007。
9. 江介倫,葉家勳、黃國禎,「台灣地區河川懸浮載空間分佈特性探討」,第十六屆水利工程研討會,2007,第804-811頁,2007。
10. 江陽聖,陳錕山,梁隆鑫,王志添,「以SPOT影像及數值地形模型推估集水區產砂量」,第十二卷,第四期,第447-456頁,2007。
11. 朱怡亭,「玉峰集水區颱風暴雨中心與崩塌地時空分布對河川懸移質輸砂濃度的影響」,國立臺灣大學地理環境資源研究所碩士論文,2007。
12. 何智武,「台灣河川上游集水區之泥砂來源與控制」,中華水土保持學報,第十五卷,第一、二期,第15-25頁,1984。
13. 汪正忠,「山坡地開發對逕流、入滲及泥砂產量影響之研究」,第十九卷,第二期,第63-74頁,1988。
14. 林三益,「水文學」,大揚出版社,第6-17頁,2001。
15. 林永禎,徐貴新,「實用水文學」,高立圖書,第196-197頁,2005。
16. 林孟龍,「颱風對於蘭陽溪上游集水區懸移質生產特性之影響」,地理學報,第三十三卷,第39-53頁,2003。
17. 林彥均,「混合流況下非均質動床之數值模擬」,國立成功大學水利及海洋研究所碩士論文,2009。
18. 林俐玲,「覆蓋管理因子(C值)之評定」,中美陡坡地土壤流失量推估技術研究論文集,1995。
19. 林偉雄,「荖濃溪斷層做為台灣南部新、古第三系界限斷層的檢討」,經濟部中央地質調查所彙刊,第十二號,第1-24頁,1999。
20. 金雁海,柴建華,朱智紅,「內蒙古黃土丘陵區次降雨條件下坡面土壤侵蝕影片因子研究」,水土保持研究,第十三卷,第六期,第192-194頁,2006。
21. 吳慶現,郭聯德, 經濟部水利署水利規劃試驗所96年度成果發表會,2007。
22. 胡蘇澄,盧昭堯,吳益裕,陳台芳,「台灣中部蓮華池地區高黏土含量土壤之紋溝間沖蝕率」,林業試驗所研究報告季刊,第十卷,第一期,第33-40頁,1995。
23. 徐碧治,「季節強烈對比地區之年懸浮載時間分佈: 荖濃溪」,南榮學報,ppB12-1-20,2008。
24. 許盈松,蔡俊鋒,魏綺瑪,黃宏莆,「水庫泥砂濁度與濃度率定關係研究—以石門水庫為例」,農業工程學報,第五十三卷,第一期,第62-71頁,2007。
25. 張瑞瑾、謝鑒衡、王明甫、黃金堂,「河流泥砂動力學」,水利電力出版社,武漢水利電力學院,1988。
26. 黃中信,「三爺溪流域綜合治水建置合適滯洪池設施之效益評析」,國立成功大學碩士論文,2007。
27. 楊道昌,游保杉,「目標函數對連續型降雨逕流模式率定之影響」,台灣水利,第四十五卷,第四期,第66-73頁,1997。
28. 蔡長泰,白進忠,「曾文溪之懸浮載輸運量」,第八屆水利工程研討會,第321-328頁,1996。
29. 蔡長泰,蔡智恆,「梯形寬頂堰堰流公式適用性之檢討」,台灣水利季刊,第四十五卷,第二期,第29-45頁,1997。
30. 萬鑫森、黃俊義,「台灣坡地土壤沖蝕」,中華水土保持學報,第二十卷,第二期,第17-45頁,1989。
31. 潘成忠,上官周平,「黃土區土壤質地對坡面產流產砂過程的影響」,中華水土保持學報,第三十五卷,第一期,第45-52頁,2004。
32. 劉培娟,馬文貴,楊吉華,孫友,李建偉,陳安強,「魯中南山區徑流小區不同坡度條件下四種植被的水土流失規律研究」,第十四卷,第六期,第357-359頁,2007。
33. 錢寧、萬兆惠,「泥砂運動力學」,第三版,科學出版社,新華書店,北京,1991。
34. 盧光輝,「降雨沖蝕指數之修訂」,中華水土保持學報,第三十卷,第二期,第87-94頁,1999。
35. 謝明霖,「遙測技術應用於懸浮載泥砂濃度定量估算之研究」,國立成功大學水利及海洋研究所博士論文,2009。
36. Agrawal Y. C. and Pottsmith, H. C., ” Laser diffraction particle sizing in STRESS”, Continental Shelf Res., 14(10/11), pp1101-1121,1994.
37. Ariathurai, R. and Arulanandan, K, ” Erosion rates of cohesive soils”, Journal of the Hydraulics Division, ASCE, 104(HY2), pp279-283, 1978.
38. Asselman, N., ” Suspended sediment dynamics in a large drainage basin: the river Rhine.”, Hydrological Processes, 13, pp1437-1450, 1999.
39. Asselman, N., ” Fitting and interpretation of sediment rating curve.”, Journal of Hydrology, 234, pp228-248, 2000.
40. Ayalon, A., Miryam, B.M. and Eytan, S., ” Rainfall-recharge relationships within a karstic terrain in the Eastern Mediterranean semi-arid regions, Israel: and characteristics”, Journal of Hydrology, 207, pp18-31, 1998.
41. Bathurst, J.C., ” Physically-based distributed modeling of an upland catchment using the Systeme Hydrologique European “, Journal of Hydrology, 87, pp103-123, 1986.
42. Bastin, G..B., Lorent, C. Duque and M. Gevers, ” Optimal Estimation of the Average Areal Rainfall and Optimal Selection of Rain Gauge Locations” , Water Resources Research, 20(4), pp463-470, 1984.
43. Bearsley, D.B., Huggins, L.F. and Monke, E.J., ” ANSWERS: a model for watershed planning”, Transaction of the ASCE, 23, pp938-944,1980.
44. Bell, V.A., and Moore, R.J. , ” A grid-based distributed flood forecasting model for use with weather radar data: Part 1,Formation”, Hydrology and Earth System Sciences, 2(2-3), pp261-281, 1988A.
45. Bell, V.A. and Moore, R.J., ” A grid-based distributed flood forecasting model for use with weather radar data: Part 1,Case Studies”, Hydrology and Earth System Sciences, 2(2-3), pp283-298, 1988B.
46. Bergtrom, S., ” The HBV model-its structure and applications”, SMHI Report RH, No.4, Norrkoping, 1992.
47. Black, K.P., and Rosenberg, M.A.,” Suspended sand measurements in a turbulent Environment: Field comparison of optical and pump sampling techniques”, Coast Engrg., 24, pp137-150, 1994.
48. Black, K.P. and Rosenberg, M.A.,” Suspended sand measurements in a turbulent environment: Field comparison of optical and pump sampling techniques”, Coastal Engineering, 24, pp137-150, 1994.
49. Bosman, J.J., Van der Velden ETJM, C.H., Hulsbergen, ” Sediment concentration measurement by transverse suction”, Coastal Engineering, 11, pp353-370, 1987.
50. Bricknell, B.R., Imhoff, J.G., Donigian, A.S. and Johanson, R.G., ” Hydrological simulation program-RORTRAN(HSPF)”,User’s Manual for release 11. EPA-600/R-97/080.United States Environmental Protection Agency, Athens, GA, 1997.
51. Campell, F.B. and Bauder, H.A., “A rating curve method for determining silt-discharge of stream,”Trans. –Am, Geophys. Union, 21, pp603-607, 1940.
52. Cerda, A., ” Seasonal changes of infiltration rates in a Mediterranean scrubland on limestone”, Journal of Hydrology, 198, pp209-225, 1997.
53. Chen, S.C., Chien S., Ferng, J.W. and Wu, C.M., ” Development of Soil Erosion Index Model in Taiwan Watershed”, Journal of Chinese Soil and Water Conservation, 29(3), pp233-247, 1998.
54. Chen, C.N., Tasi, C.H. and Tasi, C.T., ” Simulation of sediment yield from watershed by physiographic soil erosion-deposition model”, Journal of Hydrology, 327, pp293-303, 2006.
55. Childs, E.C. and Bybordi, M.,” The vertical movement of water in stratified porous material.1.infiltration”, Water Resources Research, 5(2), pp446-459, 1969.
56. Chow, J.A., Maidment, D.R. and Mays, L.W., Applied Hydrology
, McGraw-Hill,United States, pp153-155, 1988.
57. Chu, X., and Marino, M.A., ” Determination of ponding condition and infiltration into layered soils under unsteady rainfall”, Journal of Hydrology, 313, pp195-227, 2005.
58. Cunge,J.A.,” Two-dimensional Modeling of Floods Plans”, chap.17 of Unsteady Flow in Open Channels,vol2,edited by K. Mahmood and Yerjevich, Water Resources Publications, P.O.Box303, Fort Collins, Colorado. 80522, U.S.A. ,1975.
59. Dadson, S.J., Hovius, N., Chen, H, Dade, W.B., Hsieh, M.L., Willett, S.D., Ching, H.J., Horng, M.J., Chen, M.J., Stark, C.P., Lague, D. and Lin, J.C., Links between erosion, runoff, variability and seismicity in the Taiwan orogen, Nature, 426, pp648-651, 2003.
60. Dendy, F.E. and Bolton, G.C.,” Sediment yield-runoff-drainage area relationship in the United States”, Journal of Soil and Water Conservation, 31, pp264-266, 1976.
61. Druce, J.D.,” Insights from a history of seasonal flow forecasting with a conceptual hygrologic model”, Journal of Hydrology , 249, pp102-112, 2001.
62. Duan, N., ” Smearing estimate: a nonparametric retransformation method” Journal of the American Statistical Society ,78, pp605-610, 1983.
63. Einstein, H.A., Anderson, A.G. and Johnson, J.W., ” A Distinction Between Bed-Load and Suspended-Load in Natural Streams”, Trans., Am., Geophys., Union, vol.21,pt. 2, 1940.
64. Ferguson, R.I., ” River loads underestimated by rating curves.”, Water Resources Research, 22, pp74-76, 1986.
65. Flanagan, D.C., Ascough II, J.C., Nearing, M.A., and Laflen, J.M., ” The water erosion prediction project(WEPP) model”, In: Harmon, R.S., Doe III,W.W.(Eds.), Landscape Erosion and Evolution Modeling. Kluwer Academic , New York, pp145-199, 2001.
66. Fourier, F., ” Climat et erosion: Ia relation entre I’erosion du sol par I’eau et les precipitation atmospheriques ”, Presses Universitaires de France, p203, 1960.
67. Freeze, R.A. and Harlan, R.L.,” Blueprint for a physically-based digitally-simulated hydrologic response model”, Journal of Hydrology 9, pp237-258, 1969.
68. Garcia, M.H.,”Sedimentation Engineering”, Manual 110,ASCE,20,2007.
69. Graf, Hydraulics of Sediment Transport , pp189-194,1971A.
70. Graf, Hydraulics of Sediment Transport , pp235-238,1971B.
71. Green, W.H. and Ampt, G.A. , ” Studies on soils physics, part Ι,the flow of air and water through soils”, J. Agric. Sci., 4(1), pp1-24, 1911.
72. Gregory, K.J. and Walling, D.E., Drainage Basin Form and Process, London, Arnold, pp458, 1973.
73. Hairsine, P.B., Sander, G.C., Rose, C.W., Parlange, J.-Y., Hogarth, W.L. and Lisle,I., ” Unsteady soil erosion due to rainfall impact: a model of sediment sorting on the hillslope”, Journal of Hydrology, 220, pp115-128, 1999.
74. Hansen, V.E., Israelson, O.A. and Stingham, G., Irrigation Principles and Pratice, New York,pp52,1980.
75. Horton, R.E., ” Analysis of runoff plot experiments with varying infiltration capacity”, Trans.Am.Geophys.Union, 20, pp693-711, 1939.
76. Hrissanthou V., ” Estimate of sediment yield in a basin without sediment data”, CARENA , 64, pp333-347, 2005.
77. Hsu, P.C., Chen , C.N. and Tsai,C.T. ” Impact of Rainfall Characteristics on Suspended Sediment Transport and Sediment Yield In Laonong River,Taiwan”, International Symposium in Pacific Rim, Taipei, Taiwan , pp169-179, 2010.
78. Hsu, P.C., Chen , C.N. and Tsai,C.T., “Real-time Prediction of the Peak Suspended Sediment Concentration and Sediment Yield of the Lao-Nung River during Storms Using Rainfall Characteristics Factors”, International Journal of Sediment Research,26(2),pp163-180,2011.
79. Itakura, T. and Kishi, T.,” Open channel flow with suspended sediments”, Journal of Hydraulics Division, ASCE, vol.106, No.HY8, pp1325-1343, 1980.
80. Jarocki, W., A Study of sediment, translated from Polish (1957), Nat. Sci. Found. and U.S. Dept. of Int., Washington , D.C, 1963.
81. Jeje, L.K., Ogunkoya, O.O. and Oluwatimlehin, J.M., “ Variation in suspended sediment concentration during storm discharge in three small streams in upper osun basin, central western Nigeria”, Hydrological Processes, 5, pp361-369,1991.
82. Knisel, W.G.,” CREAMS: A Field Scale Model for Chemicals , Runoff and Erosion from Agricultural Management Systems ”, USDA,1980.
83. Kothyari, U.C., Tiwari, A.K. and Singh, R.,” Estimation of temporal variation of sediment yield from small catchments through the kinematic method”, Journal of Hydrology, 203, pp39-57, 1997.
84. Kumar, S. and Rastogi, R.A.,”A Conceptual catchment model for estimating suspended sediment flow”, Journal of Hydrology, 98, pp155-163, 1987.
85. Law, D.J., Bale, A.J. and Jones, S.E. , ”Adaptation of focused beam reflectance measurement to in-situ particle sizing in estuaries and coastal waters”, Marine Geol., Amsterdam, 140(1-2), pp47-89,1997.
86. Lambin, E.F. and Ehrlich, D.,”Land-cover change in sub-saharan Africa(1981-1991): Application of change index based on remotely sensed surface temperature and vegetation indices at a continental scale”, Remote Sensing of Environment, 61, pp181-200,1997.
87. Lee,K.T. and Yen,B.C.,”Geomorphology and kinematic-wave based hydrograph derivation”, J.Hydr. Engrg, ASCE, 123(1),pp73-80,1997.
88. Lee, H.Y. and Singh,V.,P.,” Prediction of sediment yield by coupling Kalman filter with instantaneous unit sediment graph ”, Hydrological Processes, 13, pp2861-2875,1999.
89. Lee, H.Y. , Hsieh, H.M. and Yang,C.T., User’s Manual for NETSTARS (Network Sediment Transport Model for Alluvial River Simulation)
,ppD-35,2003.
90. Leopold, L.B. and Maddock, T.,” The Hydraulic geometry of stream channels and some physiographic implications”, U.S. Geol. Survey, Prof. Paper 252,1953.
91. Li,X.T.,Lai,W.,Wang,Q.Xu and Zhao,J.,”Capacitance sensors for measuring suspended sediment concentration”, Catena, 60, pp227-237 ,2005.
92. Li, Y.W. and Fang, M.,” An algorithm for the retrieval of suspended sediment in coastal waters of China from AVHRR data”, Continental Shelf Res., 18, pp487-500, 1998.
93. Linsley, R.L. and Franzin, J.B., Water Resources ,2ND ed. McGrow-Hill Book Company, N.Y. U.S.A., pp13, 1995A.
94. Linsley, R.L. and Franzin, J.B., Water Resources ,2ND ed. McGrow-Hill Book Company, N.Y. U.S.A., pp43, 1995B
95. Linsley, R.L.,Kohler,M.A.and Paulhus,J.L., Hydrology for Engineers ,2ND ed. McGrow-Hill Book Company, N.Y. U.S.A., pp405-408, 1975A.
96. Linsley, R.L.,Kohler,M.A.and Paulhus,J.L., Hydrology for Engineers ,2ND ed. McGrow-Hill Book Company, N.Y. U.S.A., pp257-260, 1975B
97. Linsley, R.L.,Kohler,M.A.and Paulhus,J.L., Hydrology for Engineers ,2ND ed. McGrow-Hill Book Company, N.Y. U.S.A.,pp230-233,1975C.
98. Mchenry,J.R.,Coleman,N.L.,Wills,J.C.,Murphree,C.E.,Bolton,G.C.,Sansom,O.W. and Gill,A.C,”Performance of nuclear-sediment concentration gauges”, Proc., Isotopes in Hydrology SYmp., International Atomic Energy Agency, Vuenna, pp207-225.,1967.
99. Meade, R.H., Yuzyk, T.R.and Day, T.J., ” Movement and storage of sediment in rivers of the United States and Canada. In: Surface Water”, Hydrology. Geological Society of America, Boulder, Colorado, pp255-280, 1990.
100. Mehta A.J.,Hayter,E.J., Parker,W.R.,Krone R.B. and Teeter, A.M.M”Cohesive sediment transport I:process description”,Journal of Hydraulic Engineering,115(8),pp1076-1093,1989.
101. Meyer,L.D.,”How rain intensity affects interrial erosion”,Transaction,ASAE,pp1472-1475, 1981.
102. Meyer-Peter, E. and Muller, R., Formula for bed-load transport, Proceeding of International Association for Hydraulic Research, 2nd meeting, Stockholm, 1948.
103. Michel, C., Andreassin,V. and Perrin,C.,”Soil Concentration Service Curve Number method :how to mend a wrong soil moisture accounting procedure ”, Water Resources Reasearch, 41, 2005.
104. Milliman, J.D. and Meade, R.H.,”World-wide delivery of river sediment to the oceans”, Journal of Hydrology, 91, pp1-21,1983.
105. Mimikou, M. and Rao, A.R., “Regional monthly rainfall-runoff model”, Journal of Water Resource Planning and Management”, 109(1), pp75-83, 1983.
106. Mishra, S.K., Tyagi, J.V., Singh, V.P. and Singh, R., ” SCS-CN-based modeling of sediment yield”, Journal of Hydrology, 324, pp301-322, 2006.
107. Misra, R.K. and Rose, C.W., Annual for use of program GUEST , Division of Australian Environmental Studies Report, Griffith University, Brisbane, Qid,1990.
108. Moore, R.,J.,”A Dynamic Model of Basin Sediment Yield”, Water Resources Research, 20, pp89-103,1984.
109. Moran, P. A.P., ” Dams in a serious with a continuous release ”, J. Appl. Prob.4,pp380-388, 1971.
110. Morgan,R.P.C.,Quinton,J.N.,Smith,R.E.,Govers,G.,Poesen,J.,Auserwald,K.,Chisei,G.,Torri,D. and Styezen,M.E.,” The European Soil Erosion Model(EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments”, Earth Surface Processes and Landforms, 23, pp527-544,1998.
111. Mossa, J.,” Discharge-sediment dynamics of the lower Mississippi River”, Transactions-Gulf Coast Association of Geological, pp303-314,1988.
112. Mossa, J.,” Sediment dynamics in the lowermost Mississippi River”, Engineering Geology, 45, pp457-479,1996.
113. Musgrave, G.W.,” The quantitative evaluation of factors in water erosion, a first approximation”, Journal Soil and Water Conservation, 2, pp133-138, 1947.
114. Mutchler, C.K. and Yong, R.A.,”Soil detachment by raindrops”, Proceedings of sediment-yield workshop,ARS-S-40,USDA,1975.
115. Neitsh, S.L., Amold, J.G., Kiniry, J.R., Williams, J.R. and King K.W.,” Soil and Water Assessment Tool Theoretical Documentation. Version 2000.RWRI Report TR-191”, Texas, Water Resources Institute College Station, TX, 2002.
116. Nordin, C.F., and Dempster, G.R., ” Vertical Distribution of Velocity and Suspended Sediment” ,Middle Rio Grande, New Mexico, U.S. Geol. Survey, Prof. Paper 462-B,1963.
117. Novotny, V. and Olem, H.,”Water Quality: Prevention Identification, and Management of Diffuse Pollution”, Wiley, New York, 1994.
118. Pan, T.Y, Wang, R.Y. and Lai, J.S.,”A deterministic linearized recurrent neural network for recognizing the transition of rainfall-runoff processes”, Advanced in Water Resources, 30, pp1797-1814, 2007.
119. Parchure, T.M. and Mehta, A.J.,” Erosion of soft cohesive sediment deposits”, Journal of Hydraulic Engineering, ASCE,111(10),pp1308-0326, 1985.
120. Parlange, J.-Y., Hogarth, W.L., Rose, C.W., Sander, G.C., Hairsine, P. and Lisle, I. , ” Addendum to unsteady soil erosion model”, Journal of Hydrology, 217, pp149-156, 1999.
121. Philip, J.R.,” The Theory of infiltration: 1, The infiltration equation and its solution”, Soil Sci., 83(5), pp345-357,1957.
122. Phillips, J.M., Webb, B.W., Walling, D.E. and G.J.L., Leeks, “ Estimating the suspended sediment loads of river in the LOIS study area using infrequent samples”, Hydrological Processes ,13, pp1035-1050,1999.
123. Picouet, C., Hingray, B. and Olivery, J.C.,” Empirical and conceptual modeling of the suspended sediment dynamics in a large tropical African river: the Upper Niger river basin”, Journal of Hydrology, 250, pp19-39, 2001.
124. Plate, E.J., Ihringer, J. and Lutz, W. , ” Operation models for flood calculation”, Journal of Hydrology, 100, pp489-506, 1988.
125. Rendon-Herrero, O.,” Unit Sediment Graph”, Water Resources Research, 14, pp889-901,1978.
126. Restrepo, J.D., Kjerfve, B., Hermelin, M. and Restrepo, J.C., ” Factors Controlling sediment yield in a major South American drainage basin: the Magdalena River ,Colombia”, Journal of Hydrology, 316, pp213-232, 2006.
127. Rovira, A., and Batalla, R.J.,” Temporal distribution of suspended sediment transport in a Mediterranean basin: The Lower Tordera (NE SPAIN),” Geomorphology, 79, pp58-71, 2006.
128. Schmidt, K.H., and Morche, D.,”Sediment output of effective discharge in two small high mountain catchments in the Bavarian Alps, Germany” , Geomorphology, 80, pp131-145,2006.
129. Seeger, M., Errea, M.-P., Begueria, S., Arnaez, J., Marti, C. and Garcia-Ruiz, J.M. ,” Catchment soil moisture and rainfall characteristics as determinant factors for discharge/suspended sediment hysteretic loops in a small headwater catchment in the Spanish Pyrenees”, Journal of Hydrology, 288, pp299-311,2004.
130. Sharma, P.P., Gupta,S.C. and Foster G.R.,”Raindrop-induced soil detachment and sediment transport from interrial areas”,Soil Science Society America Journal,59,pp727-734,1995.
131. Sheridan,M.F.,and Macias,J.L.,PC software for 2-dimensional gravity-driven flows: Application to Colima ND ei Chichon Volcanoes, Mexico, Proc. Sceond International Meeting on Volcanology, Colima,Mexico,5,1992.
132. Sherman, L.K.,” Stream-flow from rainfall by the Unit Graph Method”, Enging. News Rec., 108, pp501-505, 1932.
133. Shimizu, Y., Yamaguchi, H. and Itakura, T.,” Three Dimensional computation of flow and bed deformation”, Journal of Hydraulic Engineering, ASCE, 116(9), pp1090-1108, 1990.
134. Simon, A., Dickerson, W. and Heins, A., ” Suspended-sediment transport rates at the 1.5-year recurrance interval for ecoregions of the United States: transport conditions at the bankfull and effective discharge?”, Geomorphology , 58, pp243-262, 2004.
135. Stephensin, D., and Meadows, M.E., Kinematic Hydrology and Modelling, Elsevier science Publishing Co. Inc, New York, U.S.A., 1986.
136. Syvitski, J.P.M., Peckham, S.D., Hilberman, R. and Mulder, T.,” Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective”, Sediment. Geol., 162, pp5-24, 2003.
137. Teisson, C.,” Cohesive suspended sediment transport: feasibility and limitations of numerical modeling”, Journal of Hydraulic Resaerch, 29(6), pp755-769, 1991.
138. Thorne, P.D., Vincent, C.E., Hardcastle, P.J. and Pearson,N.,”Measuring suspended sediment concentration using acoustic backscatter devices”, Marine Geology, Amsterdam, 98, pp7-16,1991.
139. Topp, G.C., Davis, J.L. and Annan A.P.,”Electromagnetic determination of soil watr content and electrical conductively measurement using time domain refleectometry”, Water Resources Research,16, pp574-582, 1980.
140. Tsai, C.H. and Tsai, C.T.,” Velocity and concentration distribution of sediment-laden open channel flow”, Journal of the American Water Resources Association,36(5),pp1075-10786,2000.
141. Unny, T.E. and Karmeshu,” Stochastic nature of output from conceptual reservoir model cascades”, Journal of Hydrology, 33, pp161-180, 1984.
142. U.S. Army Corps. of Engineers (USACE), HEC-HMS user’s manual,2001.
143. Vanoni, V.”Sedimentation Engineering’, Chap.IV.sec-C.,Manual 54,ASCE,New York,USA,1975.
144. Vericat, D. and Batalla, R.J.,”Sediment transport in a large impounded river: The lower Ebro, NE Iberian Peninsula”, Geomorphology, 79, pp72-92, 2006.
145. Verstraeten, G. and Poesen, J.,” Factors Controlling sediment yield from small intensively cultivated catchments in a temperate humid climate”, Geomorphology, 40, pp123-144, 2001.
146. Walling, D.E.,” Suspended sediment and solute yields from a small catchment prior to urbanization.” In:Gregory,K.J.Walling, D.E.(Eds.), Fluvial Processes in Instrumented Watersheds,vol.64. Institute of British Geographers, pp141-147, 1974.
147. Walling, D.E.,” Suspended sediment and solute response characteristics of river Exe, Devon, England”, In: Davision-Arnott, R., Nickling, W. (Eds.), Research in Fluvial System. Geoabstracts, Norwich, pp167-197, 1978.
148. Walling, D.E. and Webb, B.W., Sediment availability and the prediction of storm-period sediment yields, In: Walling, D.E. (eds.) , Recent Developments in the Explanation and Prediction of Erosion and Sediment Yield, England: IAHS Publication , pp327-337 , 1982.
149. Walling, D.E. and Fang, D.,” Recent trends in the suspended sediment loads of the world’s rivers”, Global and Planetary Change, 39, pp111-126, 2003.
150. Wang, X.P., Cui, Y., Pan, Y.X., Li, X.R. and Yu, Z., ” Effects of rainfall characteristic on infiltration and redistribution patterns in revegetation-stabilized desert ecosystems”, Journal of Hydrology, 358, pp134-143, 2008.
151. Williams, J.R., ” Sediment yield prediction with universal equation using runoff energy factor. Present and Prospective Technology for Predicting Sediment Yield and Sources. Proceeding of the Sediment Yield Workshop, USDA Sedimentation Laboratory, Oxford, Mississippi, November 28-30, 1972, ARS-S-40. USDA-Agricultural Research Service, Washington, DC, pp244-252, 1975.
152. Williams, J.R. and Berndt, H.D., ” Sediment yield prediction based on watershed hydrology”, Trans.Am.Soc.Agric.Eng., 20, pp1100-1104,1977.
153. Williams, J.R.,” A sediment graph model based on an instantaneous unit sediment graph”, Water Resources Research, 14, pp659-664, 1978.
154. Williams, G..P. , ” Sediment concentration versus water discharge during single hydrologic events in rivers” , Journal of Hydrology, 111, pp89-106, 1989.
155. Wischmeier, W.H. , Smith, D.D. and Uhland R.E.,” Evaluation of factors in the soil loss equation” ,Agr. Eng., 39, pp458-462, 1958.
156. Woolhiser, D.A., Simulation of Unsteady Overland Flow, Chap. 12 In: Unsteady Flow in Open Channels (Eds. K. Mahmood and Y. Yevjevich), Water Resources Publication, Forts Collins, U.S.A, 1975.
157. Wu, J., Zhang, R. and Yang, J.H.,” Aalysis of rainfall-recharge relationships”, Journal of Hydrology, 177, pp143-160, 1996..
158. Yu, P.S. , ” Real Time Grid Based Distributed Rainfall-Runoff Model for Flood Forecasting With Weather Radar”, PhD, Thesis, University of Birmingham, 1987.