簡易檢索 / 詳目顯示

研究生: 陳彥豪
Chen, Yan-Hao
論文名稱: 多重金屬陽離子鈣鈦礦材料特性分析及應用於太陽能電池之研究
Analysis of Doubled Metal Cations Perovskite’s Properties and Their Application for Perovskite Solar Cells
指導教授: 高騏
Gau, Chie
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 80
中文關鍵詞: 多元鈣鈦礦金屬陽離子鈣鈦礦太陽能電池
外文關鍵詞: mix perovskite, metal cation, perovskite solar cell, stability
相關次數: 點閱:79下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討將不同金屬陽離子(CuBr、CuI、CuCl)進行置入多元鈣鈦礦材料(Cs5MAFAPb(IxBr3-x))中,探討其材料特性、光學性質、穩定性,並且應用於鈣鈦礦太陽能電池元件上。使用的反向結構:Glass/FTO/NiO/meso-NiO/Perovskite/PCBM/BCP/Ag作為本研究的基本元件。
    在鈣鈦礦材料發展蓬勃之下,開始出現許多的有機陽離子或鹵素混合組成多元鈣鈦礦材料,藉由不同元素的材料性質和光學特性和比例的混和來達到製程或元件上所需求的性質,所以在此研究則是將金屬陽離子Pb進行置換成不同的金屬陽離子(CuBr、CuI、CuCl),並且探討其中的改變與應用於太陽能電池元件上的效應。
    最後此研究成功的將多元鈣鈦礦(Cs5MAFAPb(IxBr3-x))中金屬陽離子Pb進行部份置換成Cu金屬離子,然而在材料特性上有更好的結晶性與穩定性,也以0.05M的Cu濃度成功應用於鈣鈦礦太陽能電池元件上,CuBr元件表現為Voc=1.00V,Jsc=16.62mA/cm2,FF=0.58,PCE=9.64%,CuI元件表現為Voc=1.00V,Jsc=15.70mA/cm2,FF=0.64,PCE=10.04%,CuCl元件表現為Voc=0.99V,Jsc=18.18mA/cm2,FF=0.62,PCE=11.12%,在元件的穩定性上也有些許的提升,以利商業化的可能性。

    The paper presents study of replacing the Pb element in the perovskite and using solvent engineering to fabricate perovskite solar cells. By replacing the Pb element to different metals to fabricate the solar cells, not only the mixture can have the advantages of each element, but also can enhance the performance of the perovskite solar cells liftime. Finally, we fabricated the inverted perovskite solar cells with the efficiency of 9.64%(CuBr2),10.56%(CuCl2),10.04%(CuI) by using the Cu metal. After 200 hours, the solar cells with 0.05M CuBr shows only approximately 5% drop in efficiency, whereas the base cell shows drop in efficiency around 50%. It appears that mixed perovskite solar cells with doubled metal cations can much improve the lifetime

    Key Words: mix perovskite、metal cation、perovskite solar cell、stability

    中文摘要 I EXTEND ABSTRACT II 致謝 XII 目錄 XIII 表目錄 XVIII 圖目錄 XIX 第一章 序論 1 1-1 前言 1 1-2 太陽能電池基本原理 2 1-2-1 太陽能電池元件基本參數 3 1-2-1-1 開路電壓(Open-Circuit Voltage, Voc) 3 1-2-1-2 短路電流密度(Short Circuit Current Density, Jsc) 3 1-2-1-3 填充因子(Fill Factor, FF) 4 1-2-1-4 光電轉換效率(Photoelectric Conversion Efficiency, PCE) 4 1-2-2 損耗機制 5 1-3 太陽能電池種類 5 1-3-1 矽晶太陽能電池 6 1-2-2 Ⅱ-Ⅵ族化合物太陽能電池 6 1-3-3 Ⅲ-Ⅴ族化合物太陽能電池 6 1-3-4 染料敏化太陽能電池 6 1-3-5 有機太陽能電池 7 1-3-6 鈣鈦礦太陽能電池 7 1-4 研究動機 8 第二章 文獻回顧 10 2-1 鈣鈦礦材料 10 2-2 鈣鈦礦製備方法 11 2-2-1 一步沉積法 11 2-2-2 兩步沉積法 12 2-2-3 雙源蒸鍍法 14 2-2-4 溶液加工法 15 2-3 鈣鈦礦結構 16 2-3-1 n-i-p 正向鈣鈦礦結構太陽能電池 16 2-3-2 p-i-n 反向鈣鈦礦結構太陽能電池 18 2-4 鈣鈦礦種類 19 2-4-1 有機陽離子鈣鈦礦 19 2-4-2 金屬陽離子鈣鈦礦 21 2-4-3 鹵素鈣鈦礦 23 第三章 實驗方法與設備 24 3-1 實驗藥品 24 3-2 實驗設計與製程 25 3-2-1 實驗流程圖 25 3-2-2 多元鈣鈦礦前置溶液配製 25 3-2-3 多元金屬陽離子鈣鈦礦前置溶液配製 26 3-2-4 多元金屬陽離子鈣鈦礦太陽能電池之製備 27 3-2-4-1 基板處理 28 3-2-4-2 緻密氧化鎳(NiOx)薄膜 28 3-2-4-3 氧化鎳多孔層(Meso-NiOx)製備 29 3-2-4-5 鈣鈦礦(Perovskite)製備 29 3-2-4-6 PCBM製備 29 3-2-4-7 BCP製備 29 3-2-4-8 Ag電極製備 30 3-3 實驗製程設備與量測儀器 30 3-3-1 製程設備 30 3-3-1-1 真空濺鍍系統(Sputter deposition) 30 3-3-1-2 加熱板(hot plate) 31 3-3-1-3 旋轉塗佈機(Spin coater) 31 3-3-1-4 熱蒸鍍系統(Thermal deposition) 31 3-3-2 量測儀器 31 3-3-2-1 X光繞射儀(X-ray Diffractometer) 31 3-3-2-2 紫外光 /可見光譜儀(UV-vis spectrum) 32 3-3-2-3 高解析熱場發射掃描式電子顯微鏡(High-Resolution Thermal Field Emission Scanning Electron Microscopy) 33 3-3-2-4 四點探針(4point probe method) 33 3-3-2-5 X光電子能譜儀(X-ray photoelectron spectroscopy) 34 3-3-2-6 電流-電壓曲線量測系統(I-V Curve) 34 3-3-2-7 光電轉換效率測定儀(IPCE) 34 第四章 實驗結果與討論 36 4-1 前言 36 4-2 多重金屬陽離子鈣鈦礦材料特性 36 4-2-1 CuBr2金屬陽離子 36 4-2-1-1 XRD分析 36 4-2-1-2 SEM分析 38 4-2-1-3 UV-vis分析 39 4-2-1-4 XPS分析 40 4-2-1-5 Cross Section 分析 42 4-2-1-6 電性分析 43 4-2-2 CuCl2金屬陽離子 44 4-2-2-1 XRD分析 44 4-2-2-2 SEM分析 46 4-2-2-3 UV-vis分析 47 4-2-2-4 XPS分析 47 4-2-2-5 Cross Section分析 49 4-2-2-6 電性分析 50 4-2-3 CuI金屬陽離子 51 4-2-3-1 XRD分析 51 4-2-3-2 SEM分析 53 4-2-3-3 UV-vis分析 54 4-2-3-4 XPS分析 55 4-2-3-5 Cross Section 分析 57 4-2-3-6 電性分析 58 4-3 多重金屬陽離子鈣鈦礦材料穩定性 59 4-3-1 熱穩定性 59 4-3-1-1 XRD分析 59 4-3-1-2 UV-vis分析 62 4-3-2 光照穩定性 65 4-3-2-1 XRD分析 65 4-3-2-2 UV-vis分析 66 4-4 多重金屬陽離子應用於鈣鈦礦太陽能電池 67 4-4-1 CuBr2金屬陽離子濃度的影響 67 4-4-2 CuCl2金屬陽離子濃度的影響 70 4-4-3 CuI金屬陽離子濃度的影響 72 4-4-4 多重金屬陽離子元件穩定度(Lifetime) 74 第五章 結論與未來展望 75 5-1 結論 75 5-2 未來展望 76 參考文獻 77

    1. Jackson, P., et al., Properties of Cu (In, Ga) Se2 solar cells with new record efficiencies up to 21.7%. physica status solidi (RRL)-Rapid Research Letters, 2015. 9(1): p. 28-31.
    2. Luque, A. and S. Hegedus, Handbook of photovoltaic science and engineering. 2011: John Wiley & Sons.
    3. Yella, A., et al., Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. science, 2011. 334(6056): p. 629-634.
    4. Akihiro Kojima, K.T., Yasuo Shirai and Tsutomu Miyasaka, <Organometal Halide Perocskite as Visible-Light Sensitizers for Photovoltaic Cells.pdf>. 2009.
    5. Saliba, M., et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016. 9(6): p. 1989-1997.
    6. Noh, J.H., et al., Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett, 2013. 13(4): p. 1764-9.
    7. Jeon, N.J., et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015. 517(7535): p. 476-80.
    8. Abdi-Jalebi, M., et al., Impact of Monovalent Cation Halide Additives on the Structural and Optoelectronic Properties of CH3NH3PbI3Perovskite. Advanced Energy Materials, 2016. 6(10): p. 1502472.
    9. Baikie, T., et al., Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A, 2013. 1(18): p. 5628.
    10. Snaith, H.J. and M. Grätzel, Electron and Hole Transport through Mesoporous TiO2 Infiltrated with Spiro-MeOTAD. Advanced Materials, 2007. 19(21): p. 3643-3647.
    11. Sun, S., et al., The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci., 2014. 7(1): p. 399-407.
    12. Tanaka, K., et al., Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Communications, 2003. 127(9-10): p. 619-623.
    13. Samuel D. Stranks, G.E.E., Giulia Grancini, Christopher Menelaou, and T.L. Marcelo J. P. Alcocer, 1 Laura M. Herz, Annamaria Petrozza, Henry J. Snaith1, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. science, 2013.
    14. Stoumpos, C.C., C.D. Malliakas, and M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem, 2013. 52(15): p. 9019-38.
    15. Etgar, L., et al., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc, 2012. 134(42): p. 17396-9.
    16. Michael M. Lee, J.T., Tsutomu Miyasaka, Takurou N. Murakami, Henry J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. science 2012. 2: p. 591.
    17. Huanping Zhou, Q.C., Gang Li, Song Luo, Tze-bing Song,Hsin-Sheng Duan, Ziruo Hong, Jingbi You, Yongsheng Liu, Yang Yang, Interface engineering of highly efficient perovskite solar cells. science, 2014. 345: p. 542-546.
    18. Jeng, J.Y., et al., CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells. Advanced Materials, 2013. 25(27): p. 3727-3732.
    19. Lee, M.M., et al., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012. 338(6107): p. 643-647.
    20. Kim, H.-S., et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2012. 2: p. 591.
    21. Eperon, G.E., et al., Morphological control for high performance, solution‐processed planar heterojunction perovskite solar cells. Advanced Functional Materials, 2014. 24(1): p. 151-157.
    22. Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-319.
    23. Liu, D. and T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature photonics, 2014. 8(2): p. 133-138.
    24. Xiao, Z., et al., Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science, 2014. 7(8): p. 2619-2623.
    25. Im, J.-H., et al., Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature nanotechnology, 2014. 9(11): p. 927-932.
    26. Chen, Q., et al., Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society, 2013. 136(2): p. 622-625.
    27. Malinkiewicz, O., et al., Metal‐Oxide‐Free Methylammonium Lead Iodide Perovskite‐Based Solar Cells: the Influence of Organic Charge Transport Layers. Advanced Energy Materials, 2014. 4(15).
    28. Jeon, N.J., et al., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials, 2014. 13(9): p. 897-903.
    29. Xiao, M., et al., A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells. Angewandte Chemie, 2014. 126(37): p. 10056-10061.
    30. You, J., et al., Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. 2014.
    31. Malinkiewicz, O., et al., Perovskite solar cells employing organic charge-transport layers. Nature Photonics, 2014. 8(2): p. 128-132.
    32. Heo, J.H., et al., Hysteresis-less inverted CH 3 NH 3 PbI 3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science, 2015. 8(5): p. 1602-1608.
    33. Eperon, G.E., et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 2014. 7(3): p. 982-988.
    34. Kulbak, M., D. Cahen, and G. Hodes, How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. The journal of physical chemistry letters, 2015. 6(13): p. 2452-2456.
    35. Noel, N.K., et al., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science, 2014. 7(9): p. 3061-3068.
    36. Hao, F., et al., Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics, 2014. 8(6): p. 489-494.
    37. Jahandar, M., et al., Highly efficient metal halide substituted CH3NH3I(PbI2)1−X(CuBr2)X planar perovskite solar cells. Nano Energy, 2016. 27: p. 330-339.
    38. Sadhanala, A., et al., Preparation of single-phase films of CH3NH3Pb (I1–x Br x) 3 with sharp optical band edges. The journal of physical chemistry letters, 2014. 5(15): p. 2501-2505.
    39. Edri, E., et al., Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. The journal of physical chemistry letters, 2014. 5(3): p. 429-433.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE