| 研究生: |
陳彥豪 Chen, Yan-Hao |
|---|---|
| 論文名稱: |
多重金屬陽離子鈣鈦礦材料特性分析及應用於太陽能電池之研究 Analysis of Doubled Metal Cations Perovskite’s Properties and Their Application for Perovskite Solar Cells |
| 指導教授: |
高騏
Gau, Chie |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 多元鈣鈦礦 、金屬陽離子 、鈣鈦礦太陽能電池 |
| 外文關鍵詞: | mix perovskite, metal cation, perovskite solar cell, stability |
| 相關次數: | 點閱:79 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討將不同金屬陽離子(CuBr、CuI、CuCl)進行置入多元鈣鈦礦材料(Cs5MAFAPb(IxBr3-x))中,探討其材料特性、光學性質、穩定性,並且應用於鈣鈦礦太陽能電池元件上。使用的反向結構:Glass/FTO/NiO/meso-NiO/Perovskite/PCBM/BCP/Ag作為本研究的基本元件。
在鈣鈦礦材料發展蓬勃之下,開始出現許多的有機陽離子或鹵素混合組成多元鈣鈦礦材料,藉由不同元素的材料性質和光學特性和比例的混和來達到製程或元件上所需求的性質,所以在此研究則是將金屬陽離子Pb進行置換成不同的金屬陽離子(CuBr、CuI、CuCl),並且探討其中的改變與應用於太陽能電池元件上的效應。
最後此研究成功的將多元鈣鈦礦(Cs5MAFAPb(IxBr3-x))中金屬陽離子Pb進行部份置換成Cu金屬離子,然而在材料特性上有更好的結晶性與穩定性,也以0.05M的Cu濃度成功應用於鈣鈦礦太陽能電池元件上,CuBr元件表現為Voc=1.00V,Jsc=16.62mA/cm2,FF=0.58,PCE=9.64%,CuI元件表現為Voc=1.00V,Jsc=15.70mA/cm2,FF=0.64,PCE=10.04%,CuCl元件表現為Voc=0.99V,Jsc=18.18mA/cm2,FF=0.62,PCE=11.12%,在元件的穩定性上也有些許的提升,以利商業化的可能性。
The paper presents study of replacing the Pb element in the perovskite and using solvent engineering to fabricate perovskite solar cells. By replacing the Pb element to different metals to fabricate the solar cells, not only the mixture can have the advantages of each element, but also can enhance the performance of the perovskite solar cells liftime. Finally, we fabricated the inverted perovskite solar cells with the efficiency of 9.64%(CuBr2),10.56%(CuCl2),10.04%(CuI) by using the Cu metal. After 200 hours, the solar cells with 0.05M CuBr shows only approximately 5% drop in efficiency, whereas the base cell shows drop in efficiency around 50%. It appears that mixed perovskite solar cells with doubled metal cations can much improve the lifetime
Key Words: mix perovskite、metal cation、perovskite solar cell、stability
1. Jackson, P., et al., Properties of Cu (In, Ga) Se2 solar cells with new record efficiencies up to 21.7%. physica status solidi (RRL)-Rapid Research Letters, 2015. 9(1): p. 28-31.
2. Luque, A. and S. Hegedus, Handbook of photovoltaic science and engineering. 2011: John Wiley & Sons.
3. Yella, A., et al., Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. science, 2011. 334(6056): p. 629-634.
4. Akihiro Kojima, K.T., Yasuo Shirai and Tsutomu Miyasaka, <Organometal Halide Perocskite as Visible-Light Sensitizers for Photovoltaic Cells.pdf>. 2009.
5. Saliba, M., et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016. 9(6): p. 1989-1997.
6. Noh, J.H., et al., Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett, 2013. 13(4): p. 1764-9.
7. Jeon, N.J., et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015. 517(7535): p. 476-80.
8. Abdi-Jalebi, M., et al., Impact of Monovalent Cation Halide Additives on the Structural and Optoelectronic Properties of CH3NH3PbI3Perovskite. Advanced Energy Materials, 2016. 6(10): p. 1502472.
9. Baikie, T., et al., Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A, 2013. 1(18): p. 5628.
10. Snaith, H.J. and M. Grätzel, Electron and Hole Transport through Mesoporous TiO2 Infiltrated with Spiro-MeOTAD. Advanced Materials, 2007. 19(21): p. 3643-3647.
11. Sun, S., et al., The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci., 2014. 7(1): p. 399-407.
12. Tanaka, K., et al., Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Communications, 2003. 127(9-10): p. 619-623.
13. Samuel D. Stranks, G.E.E., Giulia Grancini, Christopher Menelaou, and T.L. Marcelo J. P. Alcocer, 1 Laura M. Herz, Annamaria Petrozza, Henry J. Snaith1, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. science, 2013.
14. Stoumpos, C.C., C.D. Malliakas, and M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem, 2013. 52(15): p. 9019-38.
15. Etgar, L., et al., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc, 2012. 134(42): p. 17396-9.
16. Michael M. Lee, J.T., Tsutomu Miyasaka, Takurou N. Murakami, Henry J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. science 2012. 2: p. 591.
17. Huanping Zhou, Q.C., Gang Li, Song Luo, Tze-bing Song,Hsin-Sheng Duan, Ziruo Hong, Jingbi You, Yongsheng Liu, Yang Yang, Interface engineering of highly efficient perovskite solar cells. science, 2014. 345: p. 542-546.
18. Jeng, J.Y., et al., CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells. Advanced Materials, 2013. 25(27): p. 3727-3732.
19. Lee, M.M., et al., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012. 338(6107): p. 643-647.
20. Kim, H.-S., et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2012. 2: p. 591.
21. Eperon, G.E., et al., Morphological control for high performance, solution‐processed planar heterojunction perovskite solar cells. Advanced Functional Materials, 2014. 24(1): p. 151-157.
22. Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-319.
23. Liu, D. and T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature photonics, 2014. 8(2): p. 133-138.
24. Xiao, Z., et al., Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science, 2014. 7(8): p. 2619-2623.
25. Im, J.-H., et al., Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature nanotechnology, 2014. 9(11): p. 927-932.
26. Chen, Q., et al., Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society, 2013. 136(2): p. 622-625.
27. Malinkiewicz, O., et al., Metal‐Oxide‐Free Methylammonium Lead Iodide Perovskite‐Based Solar Cells: the Influence of Organic Charge Transport Layers. Advanced Energy Materials, 2014. 4(15).
28. Jeon, N.J., et al., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials, 2014. 13(9): p. 897-903.
29. Xiao, M., et al., A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells. Angewandte Chemie, 2014. 126(37): p. 10056-10061.
30. You, J., et al., Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. 2014.
31. Malinkiewicz, O., et al., Perovskite solar cells employing organic charge-transport layers. Nature Photonics, 2014. 8(2): p. 128-132.
32. Heo, J.H., et al., Hysteresis-less inverted CH 3 NH 3 PbI 3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science, 2015. 8(5): p. 1602-1608.
33. Eperon, G.E., et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 2014. 7(3): p. 982-988.
34. Kulbak, M., D. Cahen, and G. Hodes, How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. The journal of physical chemistry letters, 2015. 6(13): p. 2452-2456.
35. Noel, N.K., et al., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science, 2014. 7(9): p. 3061-3068.
36. Hao, F., et al., Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics, 2014. 8(6): p. 489-494.
37. Jahandar, M., et al., Highly efficient metal halide substituted CH3NH3I(PbI2)1−X(CuBr2)X planar perovskite solar cells. Nano Energy, 2016. 27: p. 330-339.
38. Sadhanala, A., et al., Preparation of single-phase films of CH3NH3Pb (I1–x Br x) 3 with sharp optical band edges. The journal of physical chemistry letters, 2014. 5(15): p. 2501-2505.
39. Edri, E., et al., Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. The journal of physical chemistry letters, 2014. 5(3): p. 429-433.