簡易檢索 / 詳目顯示

研究生: 呂宏基
Lu, Hung-chi
論文名稱: 利用多孔陽極氧化鋁提升發光二極體光輸出之研究
Investigation on Improving Light Output of Light Emitting Diodes with Porous Anodic Alumina
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 73
中文關鍵詞: 發光二極體多孔陽極氧化鋁奈米孔洞粗糙化
外文關鍵詞: Nanopores, Light emitting diodes (LEDs), Roughness, Porous anodic alumina (PAA)
相關次數: 點閱:146下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於發光二極體受限於其半導體高折射率,使得其外部量子效率很不理想。因此許多研究提出各種不同方法來改善光取出效率。本論文的研究目的即為利用調製多孔陽極氧化鋁的奈米孔洞來提升發光二極體的光輸出。多孔氧化鋁的孔洞排列具有規則性或粗糙特性的兩種型態。孔洞陣列的形成是藉由自我成長的機制。製作規則的奈米孔洞模板可以應用於光子晶體的發光二極體,而利用氧化鋁多孔性可以使發光二極體的表面粗糙化進而降低臨界角增加光取出。
    我們藉由設計裝置樣品的載具和拋光鋁箔片,製作出具有規則排列奈米孔洞陣列,其大小約1-5 μm。陽極氧化的載具設計成可以形成均勻的電場,而且可以避免電解液滲入內部。我們利用化學和電解拋光得到平滑的表面。此外我們採用二次氧化法來製作規則孔洞,其概念是根據在表面產生圖案輔助成長的方式。在浸泡磷酸之後孔洞的直徑大約是60 nm,間距大約是70 nm。
    再者我們將多孔陽極氧化鋁薄膜應用於磷化鋁鎵銦發光二極體上,藉由改變孔洞寬化時間來調變孔洞的大小和結構。奈米孔洞的直徑從30 nm變化到60 nm,而且表面粗糙度和傳統的發光二極體1.7 nm相比增加至14-20 nm。我們可以得到最佳的光輸出改進為39 %,經由40分鐘的寬化處理形成最適當的孔洞分佈。此多孔陽極氧化鋁薄膜扮演為中介層和散射中心在空氣和半導體材料之間,導致低的臨界角損失和Fresnel損失。

    Recently, the external quantum efficiency of light emitting diodes (LEDs) is poor due to the high refractive index of semiconductor. Many researches reported various methods to improve the light extraction efficiency. In this thesis, we used porous anodic alumina (PAA) nanopores with modulation for improving the light output of LEDs. The pore arrangements of porous alumina have two types: regularity and roughness. The formation of pore array bases on self-organized mechanism. Fabricating ordered nanopore template can apply for photonic crystal LEDs, and the porosity of alumina is used for rough surface of LEDs to reduce the critical angle and increase the light extraction.
    We fabricated an ordered nanopore array with domain size of 1-5 μm by designing a sample holder and polishing the aluminum foils. The anodizing holder is designed for forming a uniform electric field and prevents the electrolyte from soaking. We obtained a smooth surface by both chemical & electrolytic polishing. Besides, we take the two-step anodization with pre-pattern guided concept to form the regular pore array. The diameter of pores is about 60 nm after immersing in phosphoric acid and the interpore spacing is about 70 nm.
    Furthermore, we applied PAA films onto the surface of AlGaInP LEDs with modifying the pore size and the structure by changing pore-widening time. The diameter of nanopores varies form 30 nm to 60 nm and the surface roughness increases 14-20 nm comparing with 1.7 nm of conventional LED. We obtained the best improvement is 39% in light output intensity with appropriate pore distribution after 40 minutes pore-widening treatment. PAA films act as the intervening layer and scattering centers between the air and the semiconductor material results in low critical angle loss and Fresnel loss.

    Abstract I Special Thanks IV Contents V List of Tables VI List of Figures VII Chapter 1 Introduction 1 1.1. Brief Statements for Light Emitting Diodes 1 1.2. Introduction to Porous Anodic Alumina 2 1.3. Motive and Organization of the Thesis 3 Chapter 2 Background Theory 5 2.1. Highly Ordered Porous Anodic Alumina 5 2.1.1. Mechanisms and Models of Formation 5 2.1.2. Naturally Self-Organized Growth 7 2.1.3. Pre-patterned Guided Anodization 8 2.2. Light Emitting Diodes Background 9 2.2.1. The Light Efficiency of LEDs 9 2.2.2. The Background of AlGaInP LEDs 12 2.2.3. Textured (Roughened) Semiconductor Surface 14 Chapter 3 Material and Device Fabrication 15 3.1. Chemical Polishing & Electrolytic Polishing 15 3.2. Anodizing Process 16 3.3. The Process Flow of PAA-LEDs 17 3.4. Measurement of LEDs 19 Chapter 4 Results and Discussions 20 4.1. Ordered Porous Anodic Alumina Fabrication 20 4.1.1. Aluminum Foils without Polishing 20 4.1.2. SPM and Roughness of Polished Aluminum 21 4.1.3. Aluminum Foils with Polishing 22 4.1.4. Barrier Layer and Cross-section of PAA Membrane 23 4.2. AlGaInP LEDs with PAA Films 24 4.2.1. The Surface Morphology of PAA-LEDs 24 4.2.2. LED Performance 25 4.2.3. Analysis and Model for Light Extraction 27 Chapter 5 Conclusions 31 References 33

    [1] H. Sugawara, M. Ishikawa, and G. Hatakoshi,“High-efficiency InGaAlP/GaAs visible light-emitting diodes”, Appl. Phys. Lett., Vol. 58, Issue 10, pp. 1010-1012, 1991.
    [2] S. Nakamura, T. Mukai, M. Senoh,“Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Appl. Phys. Lett., Vol. 64, Issue 13, pp. 1687-1689, 1994.
    [3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku,“Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime”, Appl. Phys. Lett., Vol. 70, Issue 7, pp. 868-870, 1997.
    [4] D. V. Mogan, Y. H. Aliyu, R. W. Bunch, S. Barren, and T. Boss,“Electrical and optical properties of high performance MOCVD grown (AlxGa1-x)0.5In0.5P visible LEDs”, Electron. Lett., vol. 22, pp.1991-1992, 1993.
    [5] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins,“Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes”, Appl. Phys. Lett., Vol. 64, Issue 21, pp. 2839-2841, 1994.
    [6] S. Nakamura, T. Mukai, and M. Senoh,“High-power GaN p-n junction blue-light-emitting diodes”, Jpn. J. Appl. Phys., Vol. 30, L1998-L2001, 1991.
    [7] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama,“High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures”, Jpn. J. Appl. Phys., Vol. 34, L797-L799, 1995.
    [8] S. Nakamura and G. Fasol,“The Blue Laser Diode”, Springer, Berlin, 1997.
    [9] E. Radkov, R. Bompiedi, A. M. Srivastava, A. A. Setlur, and C. Becker,“White light with UV LEDs”, Proc. of SPIE, Vol. 5187, pp. 171-177, 2004.
    [10] Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, S. Nakamura,“Dimensionality of excitons in InGaN-based light emitting devices”, Phys. Status Solidi A, Vol. 178, Issue 1, pp. 331-336, 2000.
    [11] T. Nishida, H. Saito, and N. Kobayashi,“Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN”, Appl. Phys. Lett., Vol. 79, Issue 6, pp. 711-712, 2001.
    [12] M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins,“High-power truncated-inverted-pyramid (AlxGa1–x)0.5In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency”, Appl. Phys. Lett., Volume 75, Issue 16, pp. 2365-2367, 1999.
    [13] R. M. Fletcher, C. P. Kuo , T. D. Osentoski , K. H. Huang , M. G. Craford , V. M. Robbins,“The growth and properties of high performance AlGaInP emitters using a lattice mismatched GaP window layer”, J. Electron. Mater., Vol. 20, Issue 12, pp. 1125-1130, 1991.
    [14] H. Kim, D. J. Kim, S. J. Park, and H. Hwang, “Effect of an oxidized Ni/Au p contact on the performance of GaN/InGaN multiple quantum well light-emitting diodes”, J. Appl. Phys., Vol. 89, Issue 2, pp. 1506-1508, 2001.
    [15] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu,“Enhanced output power of InGaN–GaN light-emitting diodes with high-transparency nickel-oxide–indium-tin-oxide ohmic contacts”, IEEE Photonics Technol. Lett., Vol. 15, No. 5, pp. 646-648, 2003.
    [16] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer,“30 % external quantum efficiency from surface textured thin-film light-emitting diodes”, Appl. Phys. Lett., Vol. 63, No. 16, pp. 2174-2176, 1993.
    [17] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano and T. Mukai,“InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode”, Jpn. J. Appl. Phys., Vol. 41, L1431-L1433, 2002.
    [18] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas,“InGaN-GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures”, Appl. Phys. Lett., Vol. 84, No. 19, pp. 3885-3887, 2004.
    [19] T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang,“III-nitride blue and ultraviolet photonic crystal light emitting diodes”, Appl. Phys. Lett., Vol. 84, No. 4, pp. 466-468, 2004.
    [20] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park,“Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns”, Appl. Phys. Lett., Vol. 87, 203508, 2005
    [21] H. Masuda, K. Nishio, and N. Baba,“Fabrication of a one-dimensional microhole array by anodic oxidation of aluminum”, Appl. Phys. Lett., Vol. 63, No.23, pp. 3155-3157, 1993.
    [22] C. A. Huber, T. E. Huber, M. Sadoqi, J. A. Lubin, S. Manalis, and C. B. Prater,“Nanowire array composites”, Science, Vol. 263, no. 5148, pp. 800-802, 1994.
    [23] S. Shingubara, O. Okino, Y. Sayama, H. Sakaue, and T. Takahagi,“Ordered two-dimesion nanowire array formation using self-organized nanoholes of anodically oxidized aluminum”, Jpn. J. Appl. Phys. Part1, Vol. 36, No. 12B, pp. 7791-7795, 1997.
    [24] S. Shingubara, Y. Murakami, H. Sakaue, T. Takahagi, Kagamiyama, and H. Hiroshima,“Aluminum nanodot array formed by anodic oxidation and its conduction properties”, Proc. of SPIE, Vol. 4999, pp. 387-395, 2003.
    [25] K. Nielsch, F. Muller, A. P. Li, and U. Gusele,“Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition”, Adv. Mater., Vol. 12, No. 8, pp. 582-586, 2000.
    [26] F. Keller, M. S. Hunter, and D. L. Robinson,“Structural features of oxide coatings on aluminum”, J. Electrochem. Soc., Vol. 100, 411, 1953.
    [27] H. Masuda and K. Fukuda,“Ordered metal nanohole arrays made by a two-step replication of honeycomb structure of anodic alumina”, Science, Vol. 268, 146, 1995.
    [28] H. Masuda, F. Hasegwa, S. Ono,“Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution”, J. Electrochem. Soc., Vol. 144, No. 5, L127-L130, 1997.
    [29] H. Masuda, K. Yada, and A. Osaka,“Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acidsolution”, Jpn. J. Appl. Phys., Vol. 37, L1340-L1342, 1998.
    [30] Y. Kanamori, K. Hane, H. Sai, and H. Yugami,“100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask”, Appl. Phys. Lett., Vol. 78, No. 2, pp. 142-143, 2001.
    [31] H. Masuda, H. Yamada, M. Satoh, and H. Asoh, M. Nakao, and T. Tamamura,“Highly ordered nanochannel-array architecture in anodic alumina”, Appl. Phys. Lett., Vol. 71, No. 19, pp. 2770-2772, 1997.
    [32] C. Y. Liu, A. Datta, and Y. L. Wang,“Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces”, Appl. Phys. Lett., Vol. 78, No. 1, pp. 120-122, 2001.
    [33] H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura,“Photonic crystal using anodic porous alumina”, Jpn. J. Appl. Phys Part 2., Vol. 38, L1403-L1405, 1999.
    [34] H. Masuda, M. Ohya, K. Nishio, H. Asoh, M. Nakao1, M. Nohtomi, A. Yokoo and T. Tamamura,“Photonic band gap in anodic porous alumina with extremely high aspect ratio formed in phosphoric acid solution”, Jpn. J. Appl. Phys. Part 2, Vol. 39, L1039-L1041, 2000.
    [35] H. Masuda, M. Ohya, H. Asoh, and K. Nishio,“Photonic band gap in naturally occurring ordered anodic porous alumina”, Jpn. J. Appl. Phys. Part 2, Vol. 40, L1217-L1219, 2001.
    [36] F. Li, L. Zhang, and R. M. Metzger,“On the growth of highly ordered pores in anodized aluminum axide”, Chem. Mater., Vol. 10, pp. 2470-2480, 1998.
    [37] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina”, J. Appl. Phys., Vol. 84, No. 11, pp.6023-6026, 1998.
    [38] S. K. Hwang, S. H. Jeong, H. Y. Hwang, O. J. Lee and K. H. Lee,“Fabrication of highly ordered pore array in anodic aluminum oxide”, Korean J. Chem. Eng., Vol. 19, No.3, pp. 467-473, 2002.
    [39] R. L. Chiu, P. H. Chang,“Thickness dependence of refractive index for anodic aluminum oxide films”, J. Mater. Sci. Lett., Vol.16, pp.174-178, 1997.
    [40] Y. C. Ting, and S. L. Shy,“Pore size control of alumina membrane mask”, Proc. of SPIE, Vol. 6283, 628331, 2006.
    [41] V. P. Parkhutik and V. I. Shershulsky,“Theoretical modeling of porous oxide growth on aluminum”, J. Phys. D: Appl. Phys., Vol. 25, pp. 1258-1263, 1992.
    [42] O. Jessensky, F. Muller, and U. Gosele,“Self-organized formation of hexagonal pore arrays in anodic alumina”, Appl. Phys. Lett., Vol. 72, No. 10, pp. 1173-1175, 1998.
    [43] H. Masuda and M. Satoh,“Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask”, Jpn. J. Appl. Phys. Part 2, Vol. 35, L126-L129, 1996.
    [44] S. K. Hwang, S. H. Jeong, H. Y. Hwang, O. J. Lee, and K. H. Lee,“Fabrication of highly ordered pore array in anodic aluminum oxide”, Korean J. Chem. Eng., Vol. 19, No. 3, pp. 467-473, 2002.
    [45] E. Fred Schubert,“Light-Emitting Diodes”2nd, pp. 86-97, 2006.
    [46] S. Illek, U. Jacob, A. Plossl, P. Stauss, K. Streubel, W. Wegleiter, and R. Wirth,“Burried micro-reflectors boost performance of AlGaInP LEDs,” Compound Semicond., Vol. 8, pp. 39-42, 2002.
    [47] E. Hecht,“OPTICS”4th, pp.117-123, 2002.
    [48] Neamen,“Semiconductor Physics and Devices Basic Principles”3rd, 2003.
    [49] C. H. Chen, S. A. Stockman, M. J. Peanasky, and C. P. Kuo,“OMVPE growth of AlGaInP for high-efficiency visible light-emitting diodes”, in High Brightness Light Emitting Diodes edited by G. B. Stringfellow and M. G. Craford, Semiconduct Semimet., Vol. 48, 1997.
    [50] R. M. Fletcher, C. P. Kuo, T. D. Osentowski, K. H. Huang, and M. G. Craford, The growth and properties of high performance AlGaInP emitters using a lattice mismatched GaP window layer”, J. Electron. Mater., Vol. 20 , Issue 12 , pp. 1125-1130 , 1991.
    [51] T. Kato, H. Susawa, M. Hirotani, T. Saka, Y. Ohashi, E. Shichi, S. Shibata,“GaAs/GaAs surface emitting IR LED with Bragg reflector grown by MOCVD”, J. Cryst. Growth, Vol. 107, pp. 832-835, 1991.
    [52] N. Linder, S. Kugler, P. Stauss, K. P. Streubel, R. Wirth, and H. Zull,“High-brightness AlGaInP light-emitting diodes using surface”, Proc. of SPIE, Vol. 4278, pp. 19-25, 2001.
    [53] C. Huh, K. S. Lee, E. J. Kang, and S. J. Parka,“Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface”, J. Appl. Phys., Vol. 93, No. 11, 9383, 2003.
    [54] C.H. Liu, R.W. Chuang, S.J. Chang, Y.K. Su, L.W. Wu, and C.C. Lin,“Improved light output power of InGaN/GaN MQW LEDs by lower temperature p-GaN rough surface”, Mater. Sci. Eng., B, Vol. 112, pp. 10-13, 2004.
    [55] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura,“Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett., Vol. 84, No. 6, pp. 855-857, 2004.
    [56] Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee,“Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening”, IEEE Photonics Technol. Lett., Vol. 17, No. 11, pp. 2289-2291, 2005.
    [57] T. H. Hsueh, J. K. Sheu, H. W. Huang, J. Y. Chu, C. C. Kao, and S. C. Wang,“Enhancement in light output of InGaN-based microhole array light-emitting diodes”, I IEEE Photonics Technol. Lett., Vol. 17, No. 6, pp. 1163-1165, 2005.
    [58] H. W. Huang, C. C. Kao, J. T. Chu, H. C. Kuo, S.C. Wang, and C. C. Yu,“Improvement of InGaN-GaN light-emitting diode performance with a nano-roughened p-GaN surface”, IEEE Photonics Technol. Lett., Vol.17, No. 5, pp.983-985, 2005.
    [59] M. Iwaya, H. Kasugai, T. Kawashima, K. Iida, A. Honshio, Y. Miyake, S. Kamiyama, H. Amano, and I. Akasaki,“Improvement in light extraction efficiency in group III nitride-based light-emitting diodes using moth-eye structure”, Thin Solid Films, Vol. 515, pp. 768-770, 2006.
    [60] H. W. Huang, H. C. Kuo, C. F. Lai, C. E. Lee, C. W. Chiu, T. C. Lu, S. C. Wang, C. H. Lin, and K. M. Leung. “High-performance GaN-based vertical-injection light-emitting diodes with TiO2–SiO2 omnidirectional reflector and n-GaN roughness”, IEEE Photonics Technol. Lett., Vol. 19, No. 8, pp. 565-567, 2007.
    [61] H. W. Huang, C. C. Kao, J. T. Chu, W. C. Wang, T. C. Lu, H. C. Huo, S.C. Wang, C. C. Yu, and S. Y. Kuo,“Investigation of InGaN/GaN light emitting diodes with nano-roughened surface by excimer laser etching method”, Mater. Sci. Eng., B, Vol. 136, pp. 182-186, 2007.
    [62] R. W. Ditchburn,“Light”2nd, London, Blackie, 1963.
    [63] F. A. Jenkins and H. E. White,“Fundamentals of Optics”4th, New York, Mcgraw-Hill, 1976.

    下載圖示 校內:2008-07-05公開
    校外:2008-07-05公開
    QR CODE