| 研究生: |
游展青 Yu, Cheng-Ching |
|---|---|
| 論文名稱: |
高功率脈衝磁控濺鍍類鑽碳鍍層於不同脈衝功率與氬氣通量之機械與磨潤性質研究 Effect of Pules Power and Argon flux on Mechanical and Tribological Properties of DLC coatings used HiPIMS Technology |
| 指導教授: |
蘇演良
Su, Yean-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | HiPIMs 、類鑽碳 、磨潤性質 |
| 外文關鍵詞: | HiPIMs, Diamond-Like Carbon, Wear |
| 相關次數: | 點閱:71 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用高功率脈衝磁控濺鍍法沉積一系列類鑽碳鍍層,探討鍍層之成份、組織、結構、基本機械性質、磨潤性質等。進一步進行微鑽削的工業應用之研究。
鍍層製備參數研究採兩個階段進行:第一階段研究最佳基底鍍層參數,以光發射光譜儀器(OES)觀察濺鍍環境,變化多種濺鍍參數得到一系列鍍層,再以硬度作為參考訂定基底鍍層,以為後續使用。第二階段以基底鍍層出發,改變不同脈衝功率與氬氣通量設計一系列鍍層,分析此二參數對於性質的影響。
於第一階段中,發現較高的脈衝電流與脈衝功率可使內部離子化程度上升,使用脈衝功率5kW、氬氣通量100sccm的類鑽碳鍍膜具有較佳硬度性質,以此為基底度層進入第二階段。
於第二階段中,由SEM斷面結構中發現較高的功率下可得較厚的鍍層,拉曼分析中可知整體參數的D 峰皆往較高波數偏移,於5kW脈衝功率下偏移幅度相較其他脈衝功率少,顯示於5kW功率下碳結構失序和內部缺陷相對較少, D1、D2與D5參數的G峰位置偏移往較低波數,而D2偏移往低波數的趨勢最明顯,顯示他們的類鑽石鍵結結構增加,參照D峰與G峰位置偏移情形後,推測D2鍍層可能有最高的C-C sp3鍵結比率,此部分於XPS分析中得到驗證,D2具有最高的C-C sp3含量。
機械性質與附著性分析中,C-C sp3比例與硬度成正比,以D2鍍層具有最高奈米硬度(21.1GPa),但附著性是所有鍍層中最差的。由磨耗試驗中得知,對磨氧化鋁球相比對磨鉻鋼球,對磨氧化鋁球可得較低的摩擦係數,而磨耗深度以對磨氧化鋁球較高。於三種不同荷重的磨耗試驗中,D2鍍層於6N荷重下表現出最低的磨耗深度,於較高荷重(10N、14N)下因低附著性使鍍層磨耗率上升,整體磨潤性質以脈衝功率5kW、氬氣通量80 sccm的D5鍍層,於三種不同荷重與兩種對磨球中皆具有極低的磨耗深度與磨耗率。
In this study, a series of diamond-like carbon (DLC) coatings were deposited by high-power pulsed magnetron sputtering (HPIMs) to investigate the composition, struc-ture, mechanical and tribological properties. Coating preparation parameters were stud-ied in two stages. For the first stage, the highest hardness of coating was studied ac-cording to that the optical emission spectrometer (OES) was observed in the sputtering environment. The second stage, based on parameters of the highest hardness, a series of DLC coatings were designed by varying the pulse power and argon flux. The influence of these two parameters on the coating properties was analyzed.
The DLC coating with a pulse power of 5 kW and an argon flux of 100 sccm had the highest hardness in the first stage. In the analysis of mechanical and adhesive prop-erties, the C-C sp3 ratio is proportional to the hardness. The coating (specimen code: D2) has the highest nano-hardness (21.1 GPa) and high C-C sp3 ratio (36.66%), but the adhesive properties is the worst among all the coatings. From the wear test results, it was found that coatings sliding against Al2O3 counterpart, a lower friction coefficient was obtained compared to the AISI 52100 counterpart. The D5 coating with a pulse power of 5 kW and an argon flux of 80 sccm possesses the lowest wear depth and wear rate. The wear depth is reduced by around 30 times and the wear rate is reduced by al-most 200 times compared with the substrate. The D3 coating with a pulse power of 4 kW and an argon flux of 100 sccm possessed the highest critical load (Lc=94), therefore it displayed the longest wear life (129,756 cycles) as sliding against Al2O3 ball. On the other hand, the wear life of all coatings sliding against AISI 52100 ball that display the excellent tribological property, all coatings possess over 150,000 cycles
1. 國家奈米元件實驗室,物理氣相沉積(PVD)介紹
http://www.ndl.org.tw/docs/publication/22_4/pdf/E5.pdf
2. L.C. Chen, D.M. Bhusari, C.Y. Yang, et al., Thin solid films, 303(1997) 66-75.
3. 宋健瑋,鎢-鋁鍍層之耐氧化性及磨潤性能研究,國立成功大學機械工程學系,碩士論文,2013.
4. Martı´nez-Martı´nez, J.C.Sa´nchez-Lo´pez, Thin solid films, 472(2005) 64-70.
5. Kamiya M, Tanoue H, Takikawa H, et al., Vacuum, 83(2008) 510.
6. Patsalas P, Kaziannis S, Kosmidis C, et al., 101(2007) 124903.
7. Travaakao VJ, Bonetti LF, Capote G, et al., Surf Coat Tech-nol ,202(2007) 549.
8. Nakao S, Choi J, Kim J, et al., Diamond Relat Mater, 15(2006) 884.
9. V. Kouznetsov, K. Macak, J.M. Schneider, et al.., Surf. Coat. Technol. 122 (1999) 290.
10. Technology & Engineering for Thin Film Applica-tions-Plasma-Power Solutions and Consulting
http://www.4a-plasma-application-ps-HiPIMS.eu/English/Technology/mobile/
11. 台灣核能研究所-國內高功率脈波磁控濺射技術的發展及工業應用https://goo.gl/SQKL42
12. J. Bohlmark, J. T. Gudmundsson, J. Alami, et al., IEEE Trans. Plasma Sci., 33(2005) 346–347.
13. I. K. Fetisov, A. A. Filippov, G. V. Khodachenko, et al., Vacuum, 53(1999) 133–136.
14. Quansheng Ma, Liuhe Li, Ye Xu, et al., Applied Surface Science, 392 (2017) 826–833.
15. N. Bagcivan, K. Bobzina, A. Ludwig, et al.., Thin Solid Films, 572 (2014) 153–160.
16. U. Helmersson, M. Lattemann, J. Bohlmark, et al.., Thin Solid Films, 513 (2006) 1.
17. MANTIS-HiPIMS-HiPIMS Technology
http://www.mantisdeposition.com/mantis/latest-technology/HiPIMS.html
18. A. Leonhardt, H. Gruger, D. Selbmann, et al., Thin Solid Films, 332 (1998) 69.
19. Dong-Hwan Kim, Hyoun-Ee Kim, Kwang-Ryeol Lee, Chung-Nam Whang, In-Seop Lee, Materials Science and Engi-neering C, 22 (2002) 9-14.
20. Morten S. Jellesen, Thomas L. Christiansen, Lisbeth Rischel Hil-bert, Per Moller, Wear, 267(2009) 1709-1714.
21. W. Xue, B. V. Krishna, A. Bandyopadhyay, S. Bose, Acta Bio-materialia, 3 (2007) 1007–1018.
22. R. Olivares, S.E. Rodilb, H. Arzate, Surf. Coat. Technol., 177 –178 (2004) 758–764.
23. A.A.Voevodin, M.S.Donley, J.S.Zabinski, Surface and Coatings Technology, 92 1-2 (1997) 42-49.
24. Z.F.Zhou, K.Y.Li, I.Bello, et al., Wear, 258 10 (2005) 1589-1599.
25. Itzel Castillo Müller, Joanne Sharp, W. Mark Rainforth, et al., Wear, 376–377 B 15 (2017) 1622-1629.
26. Guojia Ma, Shuili Gong, Guoqiang Lin, et al.,Applied Surface Science, 258 7 (2012) 3045-3050.
27. Jianliang Lin, Xuhai Zhang, Peter Lee, et al., Surface & Coatings Technology, 315 (2017) 294–302.
28. K. Yamamoto, Y. Koga, S. Fujiwara, et al., Applied Physics A, 66 1 (1998) 115–117.
29. Petr Písaík, Miroslav Jelínek, Tomáš Kocourek,, Journal of Physics: Conference Series, 594 (2015) 012008.
30. Kijaszek W., Oleszkiewicz W., Optica Applicata, 46 2 (2016) 167-172.
31. Takashi Kimura, Toshihiko Mishima, Kingo Azuma, et al., Surface and Coatings Technology, 307 (2016) 1053-1058.
32. 汪建民, 材料分析. 1998: 中國材料科學學會發行.
33. 楊宗瑋, 生醫級Ti6Al4V合金與316L不鏽鋼晶表面處理後的電化學反應、生物相容性和磨耗性質之研究. 國立成功大學機械工程學系, 碩士論文, 民國102年.
34. T. Arai, H. Fujita, M. Watanabe, “Evaluation of adhesion strength of thin hard coatings.” Thin Solid Films, Vol.154 (1987) 387-401.
35. Takumi Konishi, Ken Yukimura and Koichi Takaki, Surface & Coatings Technology, 286(2016) 239–245.
36. Setsuo Nakao, Ken Yukimura, Shizuka Nakano, et al., IEEE Transactions on Plasma Science, 41 8 (2013) 1819-1829.
37. Masanori Hiratsuka, Akiyoshi Azuma and Hideki Nakamori, et al., Surface & Coatings Technology, 229 (2013) 46-49.
38. V. Kulikovsky, P. Bohac, F. Franc, et al., Diamond and Related Materials, 10 (2001) 1076-1081.
39. Glen West, Peter Kelly, Paul Barker, et al., Plasma Processes and Polymers, 6 (2009).
40. Ken Yukimura, Hisato Ogiso Shizuka Nakano, Setsuo Nakao, et al., IEEE TRANSACTIONS ON PLASMA SCIENCE, 41 (2013) 3012-3019.
41. Capano, M., et al., Characterization of amorphous carbon thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 14 (1996) 431-435.
42. Zhu W, Stoner BR, Williams BE, et al., Proc. Of IEEE 79 (1991) 621-646.
43. H.L. Bai and E.Y. Jiang: Thin Solid Films 353 (1999) 157-165.
44. J. Schwan, S. Ulrich, V. Batori, et al., Journal of Applied Physics 80, 440 (1996) doi: 10.1063/1.362745.
45. A. C. Ferrari and J. Robertson, Journal of Applied Physics 80, 440 (1996) doi: 10.1063/1.362745.
46. Leyland, A. and A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear, 2000. 246(1): p. 1-11.
47. E. Konca, Y.T. Cheng, A.T. Alpas, Surface & Coatings Technology 201 (2006) 4352-4356.
48. A. Erdemir, C. Bindal, J. Pagan, et al., Surface and Coatings Technology, 76-77 (1995) 559-563.