| 研究生: |
楊明潔 Yang, Ming--Chieh |
|---|---|
| 論文名稱: |
柴油分解菌與生物界面活性劑應用於土壤地下水復育之研究 The study of diesel-degrdaing-bacteria and biosurfactant applied for soil and groundwater bioremediation |
| 指導教授: |
黃良銘
Whang, Liang-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 160 |
| 中文關鍵詞: | 土壤管柱 、碳氫化合物 、TRFLP 、菌株 、生物復育 、DGGE |
| 外文關鍵詞: | DGGE, consortia, soil column, hydrocarbon, TRFLP, bioremediation |
| 相關次數: | 點閱:159 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技及文明發展,石化能源對人類日益重要。近年來無論在國內外均發生嚴重的油汙染事件,如儲油槽洩漏、油輪擱淺等事件。這些事件不但會在當時造成嚴重污染環境生態,且在多年後的今日,受污染的區域仍無法回復往日的生機。利用生物進行土壤生物復育成為現今復育技術的趨勢因費用低廉及低技術,但生物復育需長時間操作為此技術最大的缺點。本研究分為兩大主題,其一為以土壤管柱模擬現地生物復育,其二為以小型土壤反應槽模擬現址生物復育(土耕法),藉由添加菌劑及生物界面活性劑,期望有效的縮短復育時間。探討柴油去除率、微生物菌量變化、動力推導(K)及以分子生物學角度切入微生物生態的變遷。
首先,探討土壤管柱不同復育方式對去除率的影響,分別以營養促進(Nutrient Enhanced,NE)、生物刺激(Biostiumlation.BS)生物強化(Bioaugmentation,BA),及控制組(Sterile Soil,SS)操作。土壤管柱操作330天後,柴油殘留濃度分別為3026、4105、1851及6506 mgTPH-d/kg dry soil,9柴油降解率分別為66.6﹪、44.9﹪、80.2﹪及23.6﹪,以生物強化的效率最佳。以分子生物技術偵測不同時期土壤管柱內的微生物生態變化,90天操作後發現BA管柱內額外添加優勢柴油菌消失,並偵測到數株具有碳氫分解能力菌種。
其次,探討添加優勢菌群於土壤反應槽內,對柴油去除率的影響,以不同植菌量及添加生物界面活性劑作為實驗因子。各組柴油去除率均界於80%~90%,遠高於控制組去除率(50%)。批次實驗的柴油數據模板(pattern)符合一階動力,經一階動力迴歸求得柴油降解常數(k),以添加生物界面活性劑於高植菌的組別0.027day-1最快。添加菌劑及生物界面活性劑去除50%只需49天,但控制組需經90天以上時間。綜合來說添加菌劑可有效提高柴油降解率速率,能縮短二倍以上復育時間。
With the technology generation and human culture developing, petroleum energy is more important in human life. Recently, petroleum pollution was became worldwide problem, taking example for tank spill etc. This accident was result in danger of environmental ecology and the pollution is not easy to reconvert to original situation after many years. Bioremediation became the worldwide trade because the hydrocarbon bioremediation is more economic and low technology than other remediation. Because bio reaction is slowly and bioremediation is a long-term operation is a serious disadvantage in this technology. There is two major topics in this study. First, using soil column to simulate the in-situ bioremediation. Next using lab-scale soil microcosm to simulate the on-site bioremediation (Land farming). The bioremediation performance was evaluated by diesel removal efficiency, the trade of microrganism growth and kinetic analyses, and monitoring the changing of microrganism dynamics by molecular technology.
First, evaluating the effect of removal in soil column by different bioremediation methods which is Nutrient Enhaced(NE), Biostiulation (BS),Bioaugmentation (BA) and Control(Sterile Soil,SS).The diesel residual concentration is 3026 ,4105 ,1851 and 6506 mgTPH-d/kg dry soil and biodegradation efficiency is 66.6%, 44.9%,80.2% and 23.6% in soil column after 330 day operation. According to residual concentration result, the best performance is BA soil column. The additional dominant diesel-degradation bacteria disappeared after 90 days operation in BA soil column and several the potential diesel-degradation bacteria from reference observed in soil column by molecular biotechnology monitoring.
Next, evaluating the effect of removal in Lab-scale soil microcosm batch test by different consortia. The experimental factor is different bioaugmentation density and upgrading bioavailability by adding biosurfactant. Comparison diesel removal with Control, the removal efficiency of experimental microcosm is 80% to 90% is higher than removal efficiency of control is 50%.The diesel degradation patterns fit first-order kinetic. Comparison the diesel degradation constant by first-order kinetic, the adding biosurfactant in high bioaugmentation density is fast. The bioaugemntation by adding consortia and surfactant can raise the degradation rate and shorten the time of bioremediation over twice time.
Admon, S., Green, M., Avnimelech, Y. Biodegradation Kinetics of Hydrocarbons in Soil during Land Treatment of Oily Sludge. Bioremediation Journal 5: 193~209 (2001)
Aeckerberg, F., Bak, F., Widdel, F. Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Archives of Microbiology 156: 5~14 (1991)
Alexander, M. Biodegradation and Bioremediation 2nd edition, Academic Press, London (1999)
Anderson, M. S., Hall, R. A., Griffin, M. Microbial metabolism of alicyclic hydrocarbons: cyclohexane catabolism by a pure strain of psrudomonas sp. Journal of general microbiology 120: 89~94 (1980)
Anderson, R. T., Lovely, D. R. Hexadecane decay by methanogenesis Nature 404: 722~723 (2000)
Atlas, R. M. Petroleum Microbiology. Macmillan Publishing Company, New York (1984)
Atlas, R. M. Microbial degradation of petroleum hydrocarbons:An environmental perspective. Microbiological reviews 45: 180~209 (1981)
Atlas, R. M. Petroleum biodegradation and oil spill bioremediation. Marine Pollution Bulletin 31: 178~182 (1995)
Aurich, H. Die oxydation aliphatischer kohlenwassertoffe durch bakterien. Math.-Naturwiss.Technik 16N: 1~24
Baker, K. H., Herson, D. S. Bioremediation. McGraw-Hill, New York (1994)
Bayona, J. M., Albaiges, J., Solanas, A. M., Pares, R., Garrigues, P., Ewald, M. Selective aerobic degradation of methyl-substituted polycyclic hydrocarbons in petroleum by pure microbial cultures. International journal of environmental analytical chemistry 23: 289~303 (1986)
Beam, H. W., Perry, J. J. Microbial degradation and assimilation of n-alkyl-substituted cycloparaffins. Journal of bacteriology 118: 394~399 (1974)
Bento, F. M., Camargo, F. A. O., Okeke, B. C., Frankenberger, W. T. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentaion. Bioresource technology 96:1049~1055 (2005)
Bertrand, J., Rambeloarisoa, E., Rontani, J. F., Giusti, G., Mattei, G. Microbial degradation of crude oil in sea water incontinuous culture. Biotechnology letters 5(8):567~572 (1983)
Bleckmann, C. A., Oxley, M. E., Wilson, E. J., Hayes, K. W., Kercyck, N. L. Land treatment of produced oily sand:Field results. Waste management and Research 15: 2234~237 (1997)
Boopathy, R. Bioremediation of tetryl-contaminated soil using sequencing batch soil slurry reactor. International biodeterioration and biodegradation 55: 293~297 (2005)
Boopathy, R. Use of anaerobic soil slurry reactior for the removal of petroleum hydrocarbons in soil. International biodeterioration and Biodegradation 52: 161~166 (2003)
Boopathy, R. Factors limiting bioremediation technologies. Bioresource technology 74: 63~67 (2000)
Boopathy, R., Manning, J. A laboratory study of the bioremediation of 2,4,6-trinitrotoluene-contaminated soil using aerobic anaerobic soil slurry reactor. Water environment research 70: 80~86 (1998)
Bossert, I., Bartha, R. The fate of petroleum in soil ecosystems., Petroleum Microbiology (edited by Atlas, R. M.). Macmillan Publishing Company, New York, 435~476 (1984)
Bossert, I., Kachel, W. M., Bartha, R. Fate of hydrocarbons during oily sludge disposal in soil. Applied and environmental microbiology 47(4):763~767 (1984)
Bossert, I. D., Compeau, G. C. Cleanup of petroleum hydrocarbon contamination in soil. Microbial transformation and Degradation of Toxic Organic Chemicals (edited by L. Y. Young, C. E. Cerniglia), Wiley-Liss, New York, 77~124 (1995)
Bouwer, E. J., McCarty, P. L. Modeling of trace organics biotranformed in the subsurface. Ground Water 22: 433~440 (1984)
Britton, L. N. Microbial degradation of aliphatic hydrocarbons. In: Microbial Degradation of Organic Compounds (edited by D. T. Gibson). Marcel Dekker, New York. 89~129
Brune, G., Schoberth, S. M., Sahm, H. Growth of a strictly anaerobic bacterium on furfural(2-furaldehyde). Applied and environmental microbiology 46:1187~1192 (1983)
Bundy, J. G., Paton, G. I., Campbell, C. D. Microbial communities in different soil types do not converge after dieselcontamination. Applied and environmental microbiology 92:276~288 (2002)
Caldwell, M. E., Garrett, R. M., Prince, R. C., Suflita, J. M. Anaerobic biodegradation of long-chain n-alkanes under sulfate-reducing conditions. Environmental Science and Technology 32:2191~2195 (1998)
Cansfield, P. E., Racz, G. J. Degradation of hydrocarbon sludges in the soil. Canadian Journal of Soil Science 58:339~345 (1978)
Cassidy, D. P., Irvine, R. L. Biological treatment of a soil contaminated with diesel fuel using periodically operated slurry and solid phase reactors. Water science and technology 35:185~192 (1997)
Cerniglia, C. E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351~368 (1992)
Cerniglia, C. E. Microbial transformation of aromatic hydrocarbons.,
Chaineau, C. H., Morel, J. L., Oudot, J. Land treatment of oil-based drill cuttings in an Agricultural soil . Journal of environmental quality 25:858~867 (1996)
Coates, J. D., Anderson, R. T., Woodward, J. C., Philips, E. J., Loveley, D. E. Anaerobic degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions. Environmental Science and Technology 30:2191~2195 (1998)
Cooney, J. J. The fate of petroleum pollutants in freshwater ecosystems. Petroleum Microbiology (edited by Altas, R. M.). Macmillan Publishing Company, New York. 355~398 (1984)
Cormack, W. P., Fraile, E. R. Charaterization of a hydrocarbon degrading psdychrotrophic Antarctic bacterium. Antarctic Science 9:150~155 (1997)
Cunningham, C. J., Ivshina, I. B., Lozinsky, V. I., Kuyukina, M. S., Philp, J. C. Bioremediation of diesel-contaminated soil by microorganisms immobilised in polyvinyl alcohol. International Biodeterioration & biodegradation 54: 167~174 (2004)
Curtis, F., Lammey, J. Intrinsic remediation of diesel fuel plume in Goose Bay,Labrador,Canada. Environmental pollution 103:203~210 (1998)
Dibble, J. T., Bartha, R. Effect of Environmental Parameters on the Biodegradation of Oil Sludge. Applied and Environmental Microbiology 37:729~739 (1979).
Ehrereich, P., Behrends, A., Harder, J., Widdel, F. Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Archives of Microbiology 173:58~64 (2000)
Fehler, S. W. G., Light, R. J. Biosynthesis of hydrocarbons in Anabaena variabilis. Incorporation of (methyl-14C)- and (methyl2H3)-methionine into 7- and 8-methyl-heptadecanes. Biochemistry 9:418~422 (1970)
Foght, J. M., Gutnick, D. L., Westlake, D. W. S. Effect of emulsan on biodegradation of crude oil by pure and mixed bacterial cultures. Applied and Environmental Microbiology 55:36~42 (1989)
Foght, J. M., Westlake, D. W. Biodegradation of hydrocarbons in freshwater. Oilin Freshwater: Chemistry, Biology, Countermeasure Technology. (edited by Vandermeulen, J. H., Hrudey, S. E). Pergamon Press,New York, 217~230 (1987)
Ghazali, F. M., Rahman, R. N. Z. A., Salleh, A. B., Basri, M. Biodegradation of hydrocarbons in soil by microbial consortium. International biodeterioration & Biodegradation 54:61~67 (2004)
Ghirose, W. C., Balkwill, D. L. Enumeration and morphological characterization of bacteria indigenous to subsurface environments. Developments in Industrial Microbiology 24:213~224 (1983)
Gibson, D. T. Biodegradation of aromatic petroleum hydrocarbons.
Gibson, D. T. Microbial degradation of aromatic compounds. Science 161:1093~1097 (1989)
Giger, W., Blumer, M. Polycyclic aromatic hydrocarbons in the environment: Isolation and characterization by chrmatography, visible, ultraviolet and mass spectrometry. Analytical chemistry 46:1663~1671 (1974)
Hamaker, J. W., Goring, C. A. I. Turnover of pesticide residues in soil. bound and Conjugated Pesticide residues (edited by D. D. Kauffman, G. G. Still, D. D. Paulson, S. K. Bandal). Marcel Dekker, New York, 219~243. (1977)
Huesemann, M. H., Moore, K. O. Compositional changes during land farming of weathered michigan crude oil-contaminated soil. Journal of soil contamination 2(3):245~264 (1993)
Husemann, M. H., Truex, M. J. The role of oxygen diffusion in passive bioremediation of petroleum contaminated soils. Journal of hazardous materials 51:93~113 (1996)
Irvine, R. L., Yocum, P. S., Early, J. P., Chozick, R. Periodic processes for in situ and on-site bioremediation of leachates and soils. Water science and technology 27:97~104 (1993)
Jorgensen, K. S., Puustinen, J., Suortti, A. M. Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Environmental pollution 107:245~254 (2000)
Kaplan, C. W., Kitts, C. L. Bacterial Succession in a petroleum Land Treatment Unit. Applied and Environmental Microbiology 70:1777~1786 (2004)
Kropp, K. G., Davidova, I. A., Suflita, J. M. Anaerobic oxidation of n-dodecane by an additionreaction in a sulfate-reducing bacterial enrichment culture. Applied and Environmental Microbiology 66:5393~5398 (2000)
Kuhn, E. P., Zeyer, J., Eicher, P., Schwarzenbach, R. P. Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns. Applied and Environmental Microbiology 54:490~496 (1988)
Lal, B., Khanna, S. J. Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. Bacteriology 81:355~362 (1996)
Leahy, J. G. Microbial degradation of hydrocarbons in the environment. Microbiological reviews 54:305~315 (1990)
Liebega, E. W., Cutrightb, T. J. The investigation of enhanced bioremediation through the addition of macro and micro nutrients in a PAH contaminated soil. International Biodeterioration & Biodegradation. 44:55~64 (1999)
Lovely, D. R., Lonergan, D. K. Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organisms, GS-15. Applied and Environmental Microbiology 56:1858~1864 (1990)
Lovely, D. R., Baedecker, M. J., Lonergan, D. J., Cozzarelli, I. M., Phillips, E. J., Siegel, D. I. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339:297~300 (1989)
Maila, M. P., Randima, P., Surridge, K., Dronen, K., Cloete, T. E. Evaluation of microbial diversity of different soil layers at a contaminated diesel site. International Biodeterioration & Biodegradation 55:39~44 (2005)
Major, D. W., Mayfield, C. I., Barker, J. F. Biotranformation of benzene by denitrification in aquifer sand. Ground Water 26:8~14 (1988)
Manning, J., Boopathyy, R., Kulpa, C. F. A laboratory study in support of the pilot demonstration of a biological soil slurry reactor. Report no.SFIM-AEC-TS-CR-94038, US Army Environmental Center, Aberdeen Proving Ground, MD.
Marquez-Rocha, F. J., Olmos-Soto, J., Rosano-Hernandez, M. C., Murei-Garcia, M. Determination of the hydrocarbon-degrading metabolic capabilities of tropical bacterial isolates. International Biodeterioration & Biodegradation 55:17~23 (2005)
Mills, D. K., Fitzgerald, K., Litchfield, C. D. A comparison of DNA profiling techniques for monitoring nutrient impact on microbial community composition during bioremediation of petroleum-contaminated soils. Journal of Microbiological Methods 54:57~74 (2003)
Morgan, P., Watkinson, R. J. Hydrocarbon degradation in soils and methods for soil biotreatment. Critical reviews in biotechnology 8:305~333 (1989)
Nano, G., Borroni, A., Rota, R. Combined slurry and solid-phase bioremediation of diesel contaminated soils. Journal of Hazardous Materials B100:79~94 (2003)
Parra, J. L., Guinea J., Manresa, M. A., Robert, M., Mercade, M. E., Comelles, F., Bosch, M. P. Chemical characterization and physicochemical behaviour of biosurfactants. Journal of the American Oil Chemists’ Society.66:141~145 (1989)
Pernik, M. P., Altas, R. M., Bartha, R. Hydrocarbon metabolism by Brevibacterium erythogenes: normal and branched alkanes. Journal of bacteriology 199:868~878 (1974)
Perry, J. J. Microbial metabolism of cyclic alkanes,
Prichard, P. H., Bourquin, A. W. The use of microcosms for evaluation of interactions between pollutants and microorganisms. Advances in Microbial Ecology, vol 7 (edited by Marshall, K.C.), Plenum Press, NewYork.
Providenti, M. A., Lee, H., Trevor, J. T. Selected factors limiting the microbial degradation of recalcitrant compounds. Journal of industrial microbiology 12:379~395 (1993)
Rabus, R., Wilkes, H., Schramm, A., Harm, G., Behrends, A., Amann, R., Widdel, F. Anaerobic utilization of alkylbenzenes and n-alkanes from crude oil in an enrichment of denitrifying bacteria affiliating with the B-subclass of proteobacteria. Environmental Microbiology 1:145~157 (1999)
Richard, J. Y., Vogel, T. M. Characterization of a soil bacterial consortium capable of degrading diesel fuel. International Biodeterioration & Biodegradation. 44:93~100 (1999)
Rosenberg, E., Ron, E. High and low molecular-mass microbial surfactants. Applied microbiology and biotechnology 52:154~162 (1999)
Rosenberg, E., Ron, E. Z. Bioremediation of petroleu, contamination. Bioremediation:Principles and Applications (edited by Crawford, R. L., Crawford, D. L.) Cambridge University Press, UK, 100~124 (1996)
Rosenberg, E. The hydrocarbon-oxidizing bacteria. The Prokaryotes (edited by Balows, A., Trueper, H. P, Dwokin, M., Harder, W., Schleifer, K.-H.). Springer-Verlag, New York, 446~459 (1992)
Rosenger, E.,The hydrocarbon-Oxidizing Bacteria.
Rueter, P., Rabus, R., Wilkes, H., Aeckersberg, F., Rainey, F. A., Jannasch, H. E., Widdel, F. Anaerobic oxidation of hydrocarbons in crude oilby new types of sulfate-reducing bacteria. Nature 372:455~458 (1994)
Sabate, J., Vinas, M., Solanas, A. M. Laboratory-scale bioremediation experiments on hydrocarbon-contaminated soils. International biodeterioration & Biodegradation 54:19~25 (2004)
Salanitro, J. P., Dorn, P. B., Huesemann, M. H., Moore, K. O., Rlodes, I. A., Rice-Jackson, L. M., Vipond, T. E., Western, M. M., Wisniewski, H. L. Crude oil hydrocarbon bioremediatin and woil ecotoxicity assessment. Environmental science & technology 31:1769~1776 (1997)
Scow, K. M., Simkins, S., Alexander, M. Kinetics of mineralization of organic compounds at low concentrations in soil. Applied and environmental microbiology 51(5):1029~1035 (1986)
Seklemova, E., Pavlova, A., Kovacheva, K. Biostimulation-based bioremediation of diesel fuel: field demonstration. Biodegradation 12:311~316 (2001)
Song, H. G., Bartha, R. Effect of jet fuel spills on the microbial community of soil. Applied and Environmental Microbiology 56:652~656 (1990)
Sorkhoh, N. A., Al-Hasan, R. H., Khanafer, M., Radwan, S. S. Establishment of oil-degrading bacteria associated with cyanobacteria in oil-polluted soil. Journal of Applied Bacteriology 78:194~199 (1995)
Sorkhoh, N. A., Ibrahim, A. S., Ghannoum, M. A., Radwan, S. S. High temperature hydrocarbon degradation by Bacillus stearothermophilus from oil-polluted Kuwait desert. Applied Microbiology and Biotechnology 39:123~126 (1993)
Stetter, K. O., Huber, R., Blochl, E., Kurr, M., Eden, R. D., Fielder, M., Cash, H., Vance, I. Hyperthermophilic archaea are thriving in deep north sea and Alaskan oil reservoirs. Nature 365:743~745 (1993)
Stevenson, J. J. Lipids in soil. Journal of the American Oil Chemists’ Society 43:203~210 (1966)
Sturman, P. J., Stewart, P. S., Cunningham, A. B., Bouwer, E. J., Wolfram, J. H. Engineering scale-up of in situ bioremediation processes: a review. Journal of contaminant hydrology 19:171~203 (1995)
Sulfita, J. M., Gibson, S. A., Beeman, R. E. Anaerobic biotransformation of pollutant chemicals in aquifers. Journal of Industrial Microbiology 3:179~194 (1988)
Sutherson, S. S. Remediation Engineering:Design Concepts. CRC Press, Boca Raton. (1997)
Troy, M. A., Berry, S. W., Jerger, D. E. Biological land treatment of diesel fuel-contaminated soil: Emergency response through Closure. Bioremediation-Field Experience (edited by Flathmann, P. E., Jerger, D. E., Exner, J. H.).Lewis publishing.Boca Raton, 145~159 (1993)
Urum, K., Pekdemir, T., Copur, M. Surfactants treatment of crude oil contaminated soils. Journal of Colloid and Interface Science 276:456~464 (2004)
Venosa, A. D., Suidan, M. T., Wrenn, B. A., Strohmeier, K. L., Haines, J. R., Eberhart, B. L., King, D., Holder, E. Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environmental science & technology 30:1764~1775 (1996)
Widrig, D. L., Manning Jr, J. F. Biodegradation of No.2 diesel fuel in the vadose zone: A soil column study. Environmental Chemistry 14:1813~1822 (1995)
Zengler, K., Richnow, H. H., Rossello-Mora, R., Michaelis, W., Widdel, F. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266~269 (1999)