| 研究生: |
邱治愷 Chiu, Chih-Kai |
|---|---|
| 論文名稱: |
pH驅動包覆過氧化氫之高分子微胞產生氧氣的研究 pH-triggered oxygen generation using hydrogen-peroxide-filled polymersomes |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 高分子微胞 、氧化錳 、產氣載體 |
| 外文關鍵詞: | polymersomes, manganese oxides, gas-generating carriers |
| 相關次數: | 點閱:78 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以pH驅動產生氧氣的PLGA高分子微胞在本實驗被成功的合成出來,利用氫離子滲透進入PLGA膜,將裝載在PLGA膜中的氧化錳侵蝕而釋放出錳離子,接著錳離子擴散進入PLGA內部並使包覆在內部的過氧化氫水容易被催化而分解產生氧氣。以淬熄螢光染料Ru(dpp)3Cl2作為偵測材料產生氧氣的手段,並以ICP-AES分析氧化錳在酸性環境下的錳離子釋放量。以MnO與Mn3O4兩種不同組成的氧化錳裝載在材料中,發現氧氣釋放的多寡與氧化錳在酸性環境釋放錳離子的難易程度有關。在本實驗中,H2O2/MnO-PLGA在酸性環境下(pH5-6)確實會產生氧氣,因而有治療腫瘤缺氧區的潛力。亦有試著將材料應用在超音波顯影上,然顯影的效果不明顯,材料在產生氧氣的速率上仍有改進的空間。
pH-triggered PLGA polymersomes for oxygen generation are synthesized successfully in this paper. The H+ can diffuse into the PLGA membrane to etch the hydrophobic manganese oxides, and make the oxides release Mn ions from the membrane. When Mn ions reach the inner core of the polymersomes, hydrogen peroxide encapsulated in the material will be catalyzed, and decomposes into oxygen and water. MnO and Mn3O4 nanoparticles which have different basicity are loaded in the shell of PLGA polymersomes respectively. The oxygen-sensitive dye, Ru(dpp)3Cl2, is used to detect the gas generation by quenching fluorescence dynamically, and release of Mn ions at pH6 and pH5 is analyzed by using ICP-AES. We prove that H2O2/MnO-PLGA polymersomes have capability of generating oxygen, and the amount of gas is relative to the amount of Mn2+ released from manganese oxides. Thus, H2O2/MnO-PLGA polymersomes has potential to cure the hypoxia. The oxygen-generating polymersomes are also used as ultrasound imaging contrast agents, but the signal is not as good as we expected. The material we designed still needs improvement.
(1) Lee, Y. S. Self-Assembly and Nanotechnology : A Force Balance Approach. John Wiley & Sons inc. Publication 2008, 47-100.
(2) Chang, C. B.; Wilking, J. N.; Kim, S. H.; Shum, H. C.; Weitz, D. A. Monodisperse Emulsion Drop Microenvironments for Bacterial Biofilm Growth. Small 2015, 11, 3954-3961.
(3) Lee, M. H.; Hribar, K. C.; Brugarolas, T.; Kamat, N. P.; Burdick, J. A.; Lee, D. Harnessing Interfacial Phenomena to Program the Release Properties of Hollow Microcapsules. Adv. Funct. Mater. 2012, 22, 131-138.
(4) Teh, S. Y.; Lin, R.; Hung, L. H.; Lee, A. P. Droplet microfluidics. Lab. Chip. 2008, 8, 198-220.
(5) Datta, S. S.; Abbaspourrad, A.; Amstad, E.; Fan, J.; Kim, S.-H.; Romanowsky, M.; Shum, H. C.; Sun, B.; Utada, A. S.; Windbergs, M.; Zhou, S.; Weitz, D. A. 25th Anniversary Article: Double Emulsion Templated Solid Microcapsules: Mechanics And Controlled Release. Adv. Mater. 2014, 26, 2205-2218.
(6) Lin, C.-Y.; Hsieh, H.-Y.; Pitt, W. G.; Huang, C.-Y.; Tseng, I. C.; Yeh, C.-K.; Wei, K.-C.; Liu, H.-L. Focused Ultrasound-Induced Blood-Brain Barrier Opening for Non-Viral, Non-Invasive, and Targeted Gene Delivery. J. Control. Release 2015, 212, 1-9.
(7) Chu, M.; Hai, W.; Zhang, Z.; Wo, F.; Wu, Q.; Zhang, Z.; Shao, Y.; Zhang, D.; Jin, L.; Shi, D. Melanin Nanoparticles Derived from a Homology of Medicine and Food for Sentinel Lymph Node Mapping and Photothermal in vivo Cancer Therapy. Biomaterials 2016, 91, 182-199.
(8) McEwan, C.; Owen, J.; Stride, E.; Fowley, C.; Nesbitt, H.; Cochrane, D.; Coussios, C. C.; Borden, M.; Nomikou, N.; McHale, A. P.; Callan, J. F. Oxygen Carrying Microbubbles for Enhanced Sonodynamic Therapy of Hypoxic Tumours. J. Control. Release 2015, 203, 51-56.
(9) Hansen, A. E.; Petersen, A. L.; Henriksen, J. R.; Boerresen, B.; Rasmussen, P.; Elema, D. R.; af Rosenschold, P. M.; Kristensen, A. T.; Kjaer, A.; Andresen, T. L. Positron Emission Tomography Based Elucidation of the Enhanced Permeability and Retention Effect in Dogs with Cancer Using Copper-64 Liposomes. ACS Nano 2015, 9, 6985-6995.
(10) Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H.; Kim, C.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W.; Wang, L. V.; Zheng, G. Porphysome Nanovesicles Generated by Porphyrin Bilayers for Use as Multimodal Biophotonic Contrast Agents. Nat. Mater. 2011, 10, 324-332.
(11) Wang, H.; Zhao, Y.; Wu, Y.; Hu, Y.-l.; Nan, K.; Nie, G.; Chen, H. Enhanced Anti-Tumor Efficacy by Co-Delivery of Doxorubicin and Paclitaxel with Amphiphilic Methoxy PEG-PLGA Copolymer Nanoparticles. Biomaterials 2011, 32, 8281-8290.
(12) Sun, Y.; Zheng, Y.; Ran, H.; Zhou, Y.; Shen, H.; Chen, Y.; Chen, H.; Krupka, T. M.; Li, A.; Li, P.; Wang, Z.; Wang, Z. Superparamagnetic PLGA-Iron Oxide Microcapsules for Dual-Modality US/MR Imaging and High Intensity Focused US Breast Cancer Ablation. Biomaterials 2012, 33, 5854-5864.
(13) Ke, C.-J.; Chiang, W.-L.; Liao, Z.-X.; Chen, H.-L.; Lai, P.-S.; Sun, J.-S.; Sung, H.-W. Real-Time Visualization of pH-Responsive PLGA Hollow Particles Containing a Gas-Generating Agent Targeted for Acidic Organelles for Overcoming Multi-Drug Resistance. Biomaterials 2013, 34, 1-10.
(14) Gaspar, V. M.; Moreira, A. F.; Costa, E. C.; Queiroz, J. A.; Sousa, F.; Pichon, C.; Correi, I. J. Gas-Generating TPGS-PLGA Microspheres Loaded with Nanoparticles (NIMPS) for Co-Delivery of Minicircle DNA and Anti-Tumoral Drugs. Colloid. Surface. B 2015, 134, 287-294.
(15) Sanson, C.; Diou, O.; Thevenot, J.; Ibarboure, E.; Soum, A.; Brulet, A.; Miraux, S.; Thiaudiere, E.; Tan, S.; Brisson, A.; Dupuis, V.; Sandre, O.; Lecommandoux, S. Doxorubicin Loaded Magnetic Polymersomes: Theranostic Nanocarriers for MR Imaging and Magneto-Chemotherapy. ACS Nano 2011, 5, 1122-1140.
(16) Huang, X. P.; Fang, R. C.; Wang, D. G.; Wang, J.; Xu, H. P.; Wang, Y. P.; Zhang, X. Tuning Polymeric Amphiphilicity via Se-N Interactions: Towards One-Step Double Emulsion for Highly Selective Enzyme Mimics. Small 2015, 11, 1537-1541.
(17) Boomer, J. A.; Inerowicz, H. D.; Zhang, Z. Y.; Bergstrand, N.; Edwards, K.; Kim, J. M.; Thompson, D. H. Acid-triggered release from sterically stabilized fusogenic liposomes via a hydrolytic DePEGylation strategy. Langmuir 2003, 19, 6408-6415.
(18) Guo, X.; Szoka, F. C. Steric Stabilization of Fusogenic Liposomes by a Low-pH Sensitive PEG-Diortho Ester-Lipid Conjugate. Bioconjugate Chem. 2001, 12, 291-300.
(19) Pak, C. C.; Ali, S.; Janoff, A. S.; Meers, P. Triggerable Liposomal Fusion by Enzyme Cleavage of a Novel Peptide-Lipid Conjugate. BBA-Biomembranes 1998, 1372, 13-27.
(20) Rayner-Canham, G.; Overton, T. Descriptive Inorganic Chemistry 4th ed. W. H. Freeman and Company Publication 2006, 530-533.
(21) Devaraj, S.; Munichandraiah, N. Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties. J. Phys. Chem. C 2008, 112, 4406-4417.
(22) Dong, Y.; Li, K.; Jiang, P.; Wang, G.; Miao, H.; Zhang, J.; Zhang, C. Simple Hydrothermal Preparation of Alpha-, Beta-, and Gamma-MnO2 and Phase Sensitivity in Catalytic Ozonation. RSC. Adv. 2014, 4, 39167-39173.
(23) Yang, Y.; Huang, C. Effect of Synthetical Conditions, Morphology, and Crystallographic Structure of MnO2 on Its Electrochemical Behavior. J. Solid State Electr. 2010, 14, 1293-1301.
(24) Kim, S. H.; Kim, S. J.; Oh, S. M. Preparation of Layered MnO2 via Thermal Decomposition of KMnO4 and Its Electrochemical Characterizations. Chem. Mater. 1999, 11, 557-563.
(25) Jana, S.; Pande, S.; Sinha, A. K.; Pal, T. Synthesis of Superparamagnetic Beta-MnO2 Organosol: a Photocatalyst for the Oxidative Phenol Coupling Reaction. Inorg. Chem. 2008, 47, 5558-5560.
(26) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements. Butterworth-Heinemann Ltd. Publication 1995, 1087-1088.
(27) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements. Butterworth-Heinemann Ltd. Publication 1995, 1211-1222.
(28) Baek, M. J.; Park, J. Y.; Xu, W. L.; Kattel, K.; Kim, H. G.; Lee, E. J.; Patel, A. K.; Lee, J. J.; Chang, Y. M.; Kim, T. J.; Bae, J. E.; Chae, K. S.; Lee, G. H. Water-Soluble MnO Nanocolloid for a Molecular T1 MR Imaging: A Facile One-Pot Synthesis, In vivo T-1 MR Images, and Account for Relaxivities. ACS Appl. Mater. Inter. 2010, 2, 2949-2955.
(29) Hsu, B. Y. W.; Ng, M.; Zhang, Y.; Wong, S. Y.; Bhakoo, K.; Li, X.; Wang, J. A Hybrid Silica Nanoreactor Framework for Encapsulation of Hollow Manganese Oxide Nanoparticles of Superior T1 Magnetic Resonance Relaxivity. Adv. Funct. Mater. 2015, 25, 5269-5276.
(30) Chen, Y.; Ye, D. L.; Wu, M. Y.; Chen, H. R.; Zhang, L. L.; Shi, J. L.; Wang, L. Z. Break-up of Two-Dimensional MnO2 Nanosheets Promotes Ultrasensitive pH-Triggered Theranostics of Cancer. Adv. Mater. 2014, 26, 7019-+.
(31) Fan, W.; Bu, W.; Shen, B.; He, Q.; Cui, Z.; Liu, Y.; Zheng, X.; Zhao, K.; Shi, J. Intelligent MnO2 Nanosheets Anchored with Upconversion Nanoprobes for Concurrent pH-/H2O2-Responsive UCL Imaging and Oxygen-Elevated Synergetic Therapy. Adv. Mater. 2015, 27, 4155-4161.
(32) Luo, Y. L. Preparation of MnO2 nanoparticles by directly mixing potassium permanganate and polyelectrolyte aqueous solutions. Mater. Lett. 2007, 61, 1893-1895.
(33) Liu, R.; Duay, J.; Lee, S. B. Redox Exchange Induced MnO2 Nanoparticle Enrichment in Poly(3,4-ethylenedioxythiophene) Nanowires for Electrochemical Energy Storage. ACS Nano 2010, 4, 4299-4307.
(34) Subramanian, V.; Zhu, H. W.; Vajtai, R.; Ajayan, P. M.; Wei, B. Q. Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 nanostructures. J. Phys. Chem. B 2005, 109, 20207-20214.
(35) Wang, X.; Li, Y. D. Selected-Control Hydrothermal Synthesis of Alpha- and Beta-MnO2 Single Crystal Nanowires. J. Am. Chem. Soc. 2002, 124, 2880-2881.
(36) Yu, P.; Zhang, X.; Wang, D. L.; Wang, L.; Ma, Y. W. Shape-Controlled Synthesis of 3D Hierarchical MnO2 Nanostructures for Electrochemical Supercapacitors. Cryst. Growth Des. 2009, 9, 528-533.
(37) Feldmann, C. Polyol-Mediated Synthesis of Nanoscale Functional Materials. Adv. Funct. Mater. 2003, 13, 101-107.
(38) Wang, N.; Guo, L.; He, L.; Cao, X.; Chen, C. P.; Wang, R. M.; Yang, S. H. Facile Synthesis of Monodisperse Mn3O4 Tetragonal Nanoparticles and Their Large-Scale Assembly into Highly Regular Walls by a Simple Solution Route. Small 2007, 3, 606-610.
(39) Vazquez-Olmos, A.; Rodon, R.; Rodriguez-Gattorno, G.; Mata-Zamora, M. E.; Morales-Leal, F.; Fernandez-Osorio, A. L.; Saniger, J. M. One-Step Synthesis of Mn3O4 Nanoparticles: Structural and Magnetic Study. J. Colloid Interf. Sci. 2005, 291, 175-180.
(40) Yang, L. X.; Zhu, Y. J.; Tong, H.; Wang, W. W.; Cheng, G. F. Low Temperature Synthesis of Mn3O4 Polyhedral Nanocrystals and Magnetic Study. J. Solid State Chem. 2006, 179, 1225-1229.
(41) Wang, L.; Li, Y. H.; Han, Z. D.; Chen, L.; Qian, B.; Jiang, X. F.; Pinto, J.; Yang, G. Composite Structure and Properties of Mn3O4/Graphene Oxide and Mn3O4/Graphene. J. Mater. Chem. A 2013, 1, 8385-8397.
(42) Djerdj, I.; Arcon, D.; Jaglicic, Z.; Niederberger, M. Nonaqueous Synthesis of Manganese Oxide Nanoparticles, Structural Characterization, and Magnetic Properties. J. Phys. Chem. C 2007, 111, 3614-3623.
(43) Zhang, W. X.; Yang, Z. H.; Liu, Y.; Tang, S. P.; Han, X. Z.; Chen, M. Controlled Synthesis of Mn3O4 Nanocrystallites and MnOOH Nanorods by a Solvothermal Method. J. Cryst. Growth 2004, 263, 394-399.
(44) Li, N.; Geng, Z. F.; Cao, M. H.; Ren, L.; Zhao, X. Y.; Liu, B.; Tian, Y.; Hu, C. W. Well-Dispersed Ultrafine Mn3O4 Nanoparticles on Graphene as a Promising Catalyst for the Thermal Decomposition of Ammonium Perchlorate. Carbon 2013, 54, 124-132.
(45) Wang, H. L.; Cui, L. F.; Yang, Y. A.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. J. Am. Chem. Soc. 2010, 132, 13978-13980.
(46) Pan, D. C.; Jiang, S. C.; An, L. J.; Jiang, B. Z. Controllable Synthesis of Highly Luminescent and Monodisperse CdS Nanocrystals by a Two-Phase Approach Under Mild Conditions. Adv. Mater. 2004, 16, 982-+.
(47) Pan, D. C.; Wang, Q.; Jiang, S. C.; Ji, X. L.; An, L. J. Synthesis of Extremely Small CdSe and Highly Luminescent CdSe/CdS Core-Shell Nanocrystals via a Novel Two-Phase Thermal Approach. Adv. Mater. 2005, 17, 176-+.
(48) Zhao, N. N.; Nie, W.; Liu, X. B.; Tian, S. Z.; Zhang, Y.; Ji, X. L. Shape- and Size-Controlled Synthesis and Dependent Magnetic Properties of Nearly Monodisperse Mn3O4 Nanocrystals. Small 2008, 4, 77-81.
(49) Huang, C. C.; Khu, N. H.; Yeh, C. S. The Characteristics of Sub 10 nm Manganese Oxide T1 Contrast Agents of Different Nanostructured Morphologies. Biomaterials 2010, 31, 4073-4078.
(50) Li, P.; Nan, C. Y.; Wei, Z.; Lu, J.; Peng, Q.; Li, Y. D. Mn3O4 Nanocrystals: Facile Synthesis, Controlled Assembly, and Application. Chem. Mater. 2010, 22, 4232-4236.
(51) Seo, W. S.; Jo, H. H.; Lee, K.; Kim, B.; Oh, S. J.; Park, J. T. Size-Dependent Magnetic Properties of Colloidal Mn3O4 and MnO Nanoparticles. Angew. Chem. Int. Ed. 2004, 43, 1115-1117.
(52) Jana, N. R.; Chen, Y. F.; Peng, X. G. Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach. Chem. Mater. 2004, 16, 3931-3935.
(53) Ghosh, M.; Biswas, K.; Sundaresan, A.; Rao, C. N. R. MnO and NiO Nanoparticles: Synthesis and Magnetic Properties. J. Mater. Chem. 2006, 16, 106-111.
(54) Kim, T.; Cho, E. J.; Chae, Y.; Kim, M.; Oh, A.; Jin, J.; Lee, E. S.; Baik, H.; Haam, S.; Suh, J. S.; Huh, Y. M.; Lee, K. Urchin-Shaped Manganese Oxide Nanoparticles as pH-Responsive Activatable T-1 Contrast Agents for Magnetic Resonance Imaging. Angew. Chem. Int. Ed. 2011, 50, 10589-10593.
(55) Kwon, S. G.; Hyeon, T. Colloidal Chemical Synthesis and Formation Kinetics of Uniformly Sized Nanocrystals of Metals, Oxides, and Chalcogenides. Accounts Chem. Res. 2008, 41, 1696-1709.
(56) Gordijo, C. R.; Abbasi, A. Z.; Amini, M. A.; Lip, H. Y.; Maeda, A.; Cai, P.; O'Brien, P. J.; DaCosta, R. S.; Rauth, A. M.; Wu, X. Y. Design of Hybrid MnO2-Polymer-Lipid Nanoparticles with Tunable Oxygen Generation Rates and Tumor Accumulation for Cancer Treatment. Adv. Funct. Mater. 2015, 25, 1858-1872.
(57) Pignatello, J. J.; Oliveros, E.; MacKay, A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Crit. Rev. Env. Sci. Tec. 2006, 36, 1-84.
(58) Stohs, S. J.; Bagchi, D. Oxidative Mechanisms in the Toxicity of Metal-Ions. Free Radical Bio. Med. 1995, 18, 321-336.
(59) Action, Q. A. Quaternary Ammonium Compounds : Advances in Research and Application 2013 Edition. ScholarlyBrief Publication 2013.
(60) Strlic, M.; Kolar, J.; Selih, V. S.; Kocar, D.; Pihlar, B. A Comparative Study of Several Transition Metals in Fenton-Like Reaction Systems at Circum-Neutral pH. Acta Chim. Slov. 2003, 50, 619-632.
(61) Kim, S. M.; Jeon, M.; Kim, K. W.; Park, J.; Lee, I. S. Postsynthetic Functionalization of a Hollow Silica Nanoreactor with Manganese Oxide-Immobilized Metal Nanocrystals Inside the Cavity. J. Am. Chem. Soc. 2013, 135, 15714-15717.
(62) Lee, D. G.; Kim, S. M.; Jeong, H.; Kim, J.; Lee, I. S. Surface-Specific Deposition of Catalytic Metal Nanocrystals on Hollow Carbon Nanospheres via Galvanic Replacement Reactions of Carbon-Encapsulated MnO Nanoparticles. ACS Nano 2014, 8, 4510-4521.
(63) Shin, J. M.; Anisur, R. M.; Ko, M. K.; Im, G. H.; Lee, J. H.; Lee, I. S. Hollow Manganese Oxide Nanoparticles as Multifunctional Agents for Magnetic Resonance Imaging and Drug Delivery. Angew. Chem. Int. Ed. 2009, 48, 321-324.
(64) Chung, M. F.; Chia, W. T.; Wan, W. L.; Lin, Y. J.; Sung, H. W. Controlled Release of an Anti-inflammatory Drug Using an Ultrasensitive ROS-Responsive Gas-Generating Carrier for Localized Inflammation Inhibition. J. Am. Chem. Soc. 2015, 137, 12462-12465.
(65) Ke, C.-J.; Lin, Y.-J.; Hu, Y.-C.; Chiang, W.-L.; Chen, K.-J.; Yang, W.-C.; Liu, H.-L.; Fu, C.-C.; Sung, H.-W. Multidrug Release Based on Microneedle Arrays Filled with pH-Responsive PLGA Hollow Microspheres. Biomaterials 2012, 33, 5156-5165.
(66) Kang, E.; Min, H. S.; Lee, J.; Han, M. H.; Ahn, H. J.; Yoon, I. C.; Choi, K.; Kim, K.; Park, K.; Kwon, I. C. Nanobubbles from Gas-Generating Polymeric Nanoparticles: Ultrasound Imaging of Living Subjects. Angew. Chem. Int. Ed. 2010, 49, 524-528.
(67) He, Q. J.; Kiesewetter, D. O.; Qu, Y.; Fu, X.; Fan, J.; Huang, P.; Liu, Y. J.; Zhu, G. Z.; Liu, Y.; Qian, Z. Y.; Chen, X. Y. NIR-Responsive On-Demand Release of CO from Metal Carbonyl-Caged Graphene Oxide Nanomedicine. Adv. Mater. 2015, 27, 6741-+.
(68) Li, W.-P.; Su, C.-H.; Chang, Y.-C.; Lin, Y.-J.; Yeh, C.-S. Ultrasound-Induced Reactive Oxygen Species Mediated Therapy and Imaging Using a Fenton Reaction Activable Polymersome. ACS Nano 2016, 10, 2017-2027.
(69) Chen, H.; Tian, J.; He, W.; Guo, Z. H2O2-Activatable and O2-Evolving Nanoparticles for Highly Efficient and Selective Photodynamic Therapy against Hypoxic Tumor Cells. J. Am. Chem. Soc. 2015, 137, 1539-1547.
(70) Min, K. H.; Min, H. S.; Lee, H. J.; Park, D. J.; Yhee, J. Y.; Kim, K.; Kwon, I. C.; Jeong, S. Y.; Silvestre, O. F.; Chen, X. Y.; Hwang, Y. S.; Kim, E. C.; Lee, S. C. pH-Controlled Gas-Generating Mineralized Nanoparticles: A Theranostic Agent for Ultrasound Imaging and Therapy of Cancers. ACS Nano 2015, 9, 134-145.
(71) Kang, C.; Cho, W.; Park, M.; Kim, J.; Park, S.; Shin, D.; Song, C.; Lee, D. H2O2-Triggered Bubble Generating Antioxidant Polymeric Nanoparticles as Ischemia/Reperfusion Targeted Nanotheranostics. Biomaterials 2016, 85, 195-203.
(72) Kiessling, F.; Fokong, S.; Koczera, P.; Lederle, W.; Lammers, T. Ultrasound Microbubbles for Molecular Diagnosis, Therapy, and Theranostics. J. Nucl. Med. 2012, 53, 345-348.
(73) Ferrara, K.; Pollard, R.; Borden, M.: Ultrasound Microbubble Contrast Agents: Fundamentals and Application to Gene and Drug Delivery. In Annu. Rev. Biomed. Eng.; Annual Review of Biomedical Engineering, 2007; Vol. 9; pp 415-447.
(74) Song, M. L.; Liu, T.; Shi, C. R.; Zhang, X. Z.; Chen, X. Y. Bioconjugated Manganese Dioxide Nanoparticles Enhance Chemotherapy Response by Priming Tumor-Associated Macrophages toward M1-like Phenotype and Attenuating Tumor Hypoxia. ACS Nano 2016, 10, 633-647.
(75) Choi, H. W.; Kim, J.; Kim, J.; Kim, Y.; Song, H. B.; Kim, J. H.; Kim, K.; Kim, W. J. Light-Induced Acid Generation on a Gatekeeper for Smart Nitric Oxide Delivery. ACS Nano 2016, 10, 4199-4208.
(76) Bertout, J. A.; Patel, S. A.; Simon, M. C. Hypoxia and Metabolism series - Timeline The Impact of O2 Availability on Human Cancer. Nat. Rev. Cancer 2008, 8, 967-975.
(77) Murdoch, C.; Giannoudis, A.; Lewis, C. E. Mechanisms Regulating the Recruitment of Macrophages into Hypoxic Areas of Tumors and Other Ischemic Tissues. Blood 2004, 104, 2224-2234.
(78) Prasad, P.; Gordijo, C. R.; Abbasi, A. Z.; Maeda, A.; Ip, A.; Rauth, A. M.; DaCosta, R. S.; Wu, X. Y. Multifunctional Albumin-MnO2 Nanoparticles Modulate Solid Tumor Microenvironment by Attenuating Hypoxia, Acidosis, Vascular Endothelial Growth Factor and Enhance Radiation Response. ACS Nano 2014, 8, 3202-3212.
(79) Bennewitz, M. F.; Lobo, T. L.; Nkansah, M. K.; Ulas, G.; Brudvig, G. W.; Shapiro, E. M. Biocompatible and pH-Sensitive PLGA Encapsulated MnO Nanocrystals for Molecular and Cellular MRI. ACS Nano 2011, 5, 3438-3446.
(80) Kim, T.; Cho, E. J.; Chae, Y.; Kim, M.; Oh, A.; Jin, J.; Lee, E. S.; Baik, H.; Haam, S.; Suh, J. S.; Huh, Y. M.; Lee, K. Urchin-Shaped Manganese Oxide Nanoparticles as pH-Responsive Activatable T1 Contrast Agents for Magnetic Resonance Imaging. Angew. Chem. Int. Ed. 2011, 50, 10589-10593.
(81) Na, H. B.; Lee, J. H.; An, K. J.; Park, Y. I.; Park, M.; Lee, I. S.; Nam, D. H.; Kim, S. T.; Kim, S. H.; Kim, S. W.; Lim, K. H.; Kim, K. S.; Kim, S. O.; Hyeon, T. Development of a T1 Contrast Agent for Magnetic Resonance Imaging Using MnO Nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 5397-5401.
(82) Liu, J. N.; Liu, Y.; Bu, W. B.; Bu, J. W.; Sun, Y.; Du, J. L.; Shi, J. L. Ultrasensitive Nanosensors Based on Upconversion Nanoparticles for Selective Hypoxia Imaging in Vivo upon Near-Infrared Excitation. J. Am. Chem. Soc. 2014, 136, 9701-9709.
(83) Zhou, P. W.; Zhou, D. L.; Tao, L.; Zhu, Y. S.; Xu, W.; Xu, S.; Cui, S. B.; Xu, L.; Song, H. W. 320-Fold Luminescence Enhancement of Ru(dpp)3Cl2 Dispersed on PMMA Opal Photonic Crystals and Highly Improved Oxygen Sensing Performance. Light Sci. Appl. 2014, 3, 1-9.
(84) Rhadfi, T.; Piquemal, J. Y.; Sicard, L.; Herbst, F.; Briot, E.; Benedetti, M.; Atlamsani, A. Polyol-Made Mn3O4 Nanocrystals as Efficient Fenton-like Catalysts. Appl Catal A-Gen 2010, 386, 132-139.
校內:2018-07-18公開