簡易檢索 / 詳目顯示

研究生: 李俊儒
Lee, Jun-Ru
論文名稱: 石墨烯片之多尺度破壞性質估測
Prediction of Fracture Properties of Graphene Sheet by Multiscale Simulation
指導教授: 胡潛濱
Hwu, Chyan-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 49
中文關鍵詞: 石墨烯破壞性質多尺度模擬邊界元素法有限元素法
外文關鍵詞: graphene, crack propagation, fracture toughness, multiscale modelling, boundary element
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文發展一套方法來預測石墨烯之破壞性質,透過多尺度的模擬來結合邊界元素和有限元素,其中,位於裂縫尖端附近的分子模型,是由非線性樑元素組成的六邊型晶格;而對於整個模型,視為連續體,透過邊界元素法來模擬。非線性樑元素的性質,是由位能和應變能等效而得出的,當推導出樑元素的性質時,連續體模型的材料性質可以透過施力在分子模型上來求得,值得注意的是,本文所使用的邊界元素法,其基本解以滿足裂縫無曳引力的邊界條件,所以無需對裂縫做切割,結合邊界元素和有限元素,並導入多尺度的概念,可以省下許多計算時間以及電腦負擔。裂縫尖端附近的受力情形,其精準度也改善線彈性破壞力學計算上的問題,進而可以預測出裂縫延伸的路徑,而在不同的模式下,預測出的路徑也不相同;為了要預測破壞模式一和模式二的破裂韌度,可以藉由改變施在連續體模型上的施力來求得,而不同方向的石墨烯,破裂韌度也會有所差異。
    最後,本文與其他文獻比較後,預測裂縫延伸的路徑方向是一致的,所得之破壞韌度跟其他發表的文獻或是使用其他方法得出的值比對驗證,也都是落在可接受的範圍,證明本文發展的方法的可行性和數值精準度。

    In this study, we use multiscale simulation to predict the fracture properties of graphene sheet. The nano-scale which is near the crack tip is formed by molecular dynamic-based nonlinear beam element, while the maco-scale is described by two-dimensional special boundary element. The main feature of special boundary element is that no meshes are required along the crack surface. Coupling the nonlinear beam element by 2D boundary element of multi-scale modeling, a vast of computational tome can be saved. To predict the atomistic bond-breaking, the stress-strain curve of the beam element is a standard. With this standard, mode I and mode II fracture toughness of graphene sheet can be predicted, in addition, the crack propagation is observed, too. The obtained values were then verified by the published results measured or predicted by the other methods.

    摘要 ABSTRACT 致謝 目錄 I 表目錄 III 圖目錄 IV 符號說明 VI 第一章 緒論 1 1.1 研究目的 1 1.2 文獻回顧 1 1.3 本文架構 2 第二章 有限元素法模擬子區域 4 2.1 石墨烯材料非線性理論 4 2.2 石墨烯的機械性質 11 2.3 多尺度模擬 13 第三章 邊界元素法模擬全區域 14 3.1 邊界積分式 14 3.2 裂縫基本解 15 3.3 邊界元素方程式 16 3.4 裂縫應力強度因子 18 第四章 結合邊界元素和有限元素 21 4.1 子區域流程 21 4.2 破裂型態 22 4.3 全區域邊界條件 23 第五章 破壞性質 26 5.1 應力強度因子 26 5.2 斷裂強度 27 5.3 裂縫延展 28 5.4 模擬流程 29 第六章 結果與討論 31 6.1 ANSYS VS SBEM 31 6.1.1子區域之邊界條件 31 6.1.2應力強度因子 34 6.2 破裂韌度 34 6.3 斷裂強度 36 6.4 裂縫延展 38 6.4.1張裂型 (Mode I) 38 6.4.2剪裂型 (Mode II) 38 第七章 結論 45 REFERENCES 46

    [1] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science 321 (2008) 385-388.
    [2] A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nature Materials 10 (2011) 569.
    [3] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Reviews of Modern Physics 81 (2009) 109-162.
    [4] T.L. Anderson, Fracture mechanics - Fundamentals and applications, Taylor & Francis, Boca Raton, FL, (2005).
    [5] Y.-K. Yeh, C. Hwu, Molecular-continuum model for the prediction of stiffness, strength and toughness of nanomaterials, Acta Mechanica 230 (2019) 1451-1467.
    [6] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature 442 (2006) 282-286.
    [7] J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites, Polymer 52 (2011) 5-25.
    [8] T. Monetta, A. Acquesta, F. Bellucci, Graphene/Epoxy Coating as Multifunctional Material for Aircraft Structures, Aerospace 2 (2015).
    [9] E.J. Siochi, Graphene in the sky and beyond, Nature Nanotechnology 9 (2014) 745.
    [10] A.K. Geim, A.H. MacDonald, Graphene: Exploring carbon flatland, Physics Today 60 (2007) 35-41.
    [11] V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen, J. Zhang, A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment, Energy & Environmental Science 7 (2014) 1564-1596.
    [12] A. Omeltchenko, J. Yu, R.K. Kalia, P. Vashishta, Crack Front Propagation and Fracture in a Graphite Sheet: A Molecular-Dynamics Study on Parallel Computers, Physical Review Letters 78 (1997) 2148-2151.
    [13] R. Khare, S.L. Mielke, J.T. Paci, S. Zhang, R. Ballarini, G.C. Schatz, T. Belytschko, Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets, Physical Review B 75 (2007) 075412.
    [14] M. Xu, A. Tabarraei, J.T. Paci, J. Oswald, T. Belytschko, A coupled quantum/continuum mechanics study of graphene fracture, International Journal of Fracture 173 (2012) 163-173.
    [15] C. Baykasoglu, A. Mugan, Coupled molecular/continuum mechanical modeling of graphene sheets, Physica E: Low-dimensional Systems and Nanostructures 45 (2012) 151-161.
    [16] B. Zhang, L. Mei, H. Xiao, Nanofracture in graphene under complex mechanical stresses, Applied Physics Letters 101 (2012) 121915.
    [17] P. Zhang, L. Ma, F. Fan, Z. Zeng, C. Peng, P.E. Loya, Z. Liu, Y. Gong, J. Zhang, X. Zhang, P.M. Ajayan, T. Zhu, J. Lou, Fracture toughness of graphene, Nature Communications 5 (2014) 3782.
    [18] M. Moura, M. Marder, Tearing of Free-Standing Graphene, (2013).
    [19] M.-Q. Le, R.C. Batra, Single-edge crack growth in graphene sheets under tension, Computational Materials Science 69 (2013) 381-388.
    [20] C. Hwu, Y.C. Liang, Evaluation of stress concentration factors and stress intensity factors from remote boundary data, International Journal of Solids and Structures 37 (2000) 5957-5972.
    [21] Y.C. Chen, C. Hwu, Green's Functions for Anisotropic/Piezoelectric Bimaterials and Their Applications to Boundary Element Analysis, (2010).
    [22] C. Hwu, C.C. Li, S.T. Huang, Coupling of Boundary and Finite Elements for the Problems of Multiple Polygon-like Holes, (2014).
    [23] ANSYS User's Manual, version18.
    [24] C. Li, T.-W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, International Journal of Solids and Structures 40 (2003) 2487-2499.
    [25] 劉宇揚,"多壁奈米碳管力學性質之估測",國立成功大學航太工程研究所,2007
    [26] 侯彥嘉,"奈米碳管強度及勁度之估測",國立成功大學航太工程研究所,2014
    [27] C.W. Fan, Y.Y. Liu, C. Hwu, Finite element simulation for estimating the mechanical properties of multi-walled carbon nanotubes, Applied Physics A 95 (2009) 819-831.
    [28] 杜瑜中,"以多尺度有限元素法預測石墨烯片之破壞性質",國立成功大學航太工程研究所,2018
    [29] C. Hwu, M. Aggarwal, J.R. Lee, Fracture toughness and crack propagation in a single layer graphene sheet estimated by coupling of boundary element and finite element, (2019).
    [30] C. Hwu, Anisotropic Elastic Plates, Springer US, (2010).
    [31] A.N. Stroh, Steady State Problems in Anisotropic Elasticity, Journal of Mathematics and Physics 41 (1962) 77-103.
    [32] 黃紹慈,"多孔洞/裂縫之邊界有限元素分析",國立成功大學航太工程研究所,2016
    [33] C. Hwu, H.Y. Huang, Investigation of the stress intensity factors for interface corners, Engineering Fracture Mechanics 93 (2012) 204-224.
    [34] 蘇柏翰,"二維異向性彈性體之奇異性分析",國立成功大學航太工程研究所,2015
    [35] K. Fackeldey, The Weak Coupling Method for Coupling Continuum Mechanics with Molecular Dynamics, (2009).
    [36] C. Hwu, Matrix form near tip solutions of interface corners, International Journal of Fracture 176 (2012) 1-16.
    [37] C. Hwu, T.L. Kuo, A unified definition for stress intensity factors of interface corners and cracks, International Journal of Solids and Structures 44 (2007) 6340-6359.
    [38] Y.C. Cheng, H.T. Wang, Z.Y. Zhu, Y.H. Zhu, Y. Han, X.X. Zhang, U. Schwingenschlögl, Strain-activated edge reconstruction of graphene nanoribbons, Physical Review B 85 (2012) 073406.

    下載圖示 校內:2023-07-01公開
    校外:2024-07-01公開
    QR CODE