| 研究生: |
莊家棋 Chuang, Chia-Chi |
|---|---|
| 論文名稱: |
應用標準化地下水位指數法評估濁水溪沖積扇地下水水位枯旱狀況之研究 Assessing Groundwater Level Response to Drought on Zhuoshui River Alluvial Fan Using Standardized Groundwater Index |
| 指導教授: |
李振誥
Lee, Cheng-Haw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 標準化地下水位指數法 、Mann-Kendall趨勢檢定法 、濁水溪沖積扇 、日水位資料 、枯旱度標準 、枯旱度預測 |
| 外文關鍵詞: | Zhuoshui River Alluvial Fan, Standardized Groundwater Index, Mann-Kendall Test, Daily Groundwater Level Records, Groundwater Management |
| 相關次數: | 點閱:157 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球氣候變遷改變台灣地區的降雨型態,近年接連發生極端降雨與極端乾旱事件。在地表水供應量不足的期間,地下水被大量開發以支應迫切的民生產業用水需求。本研究選擇位於台灣中部的濁水溪沖積扇作為研究區域,提出一套簡便、統一的地下水枯旱度標準,分析2001至2016年期間第一含水層觀測站的地下水位歷線,指出歷史中地下水位相對枯旱的期間與強度,目的是了解本區地下水枯旱狀態的時間分布特性,提供未來地下水管理保育工作的研究基礎。
首先,本研究應用標準化地下水位指數法,將研究選定測站的連續180日地下水位累積值與360日地下水位累積值轉換成標準化的SGI指標:SGI180與SGI360。接著分別使用SGI180歷線與SGI360歷線,評估半年尺度與一年尺度下的地下水位相對強度變化。本研究利用SGI指標的出現機率訂定枯旱的等級,根據研究期間內SGI指標的資料累積分布函數,選擇50%、30%與10%出現機率對應的SGI指標值分別作為界定枯旱強度的門檻值。其次,使用Mann-Kendall檢定法評估研究期間內各測站地下水位的變化趨勢,並說明將枯旱度評估結果用於建立地下水管理標準線的設計方法。最後,本研究發展一套地下水枯旱度預測模式,使用歷年地下水自然消退期間的水位資料擬合消退水位預測式,將現有水位投入預測式計算產生水位消退線後,可計算SGI指標以評估未來地下水位狀態的枯旱度。
本研究使用SGI180與SGI360評估濁水溪沖積扇第一含水層的地下水枯旱狀態,相對枯旱期間的時間分布調查結果顯示:在連續豐水年出現期間,SGI180在扇頂、扇央與扇尾區測站入冬後的枯水期都偵測到枯旱訊號出現,其中扇頂區出現的枯旱強度相對輕微;而SGI360僅在少數測站偵測到短暫的枯旱訊號。在連續枯水年出現期間,SGI180與SGI360在扇頂、扇央與扇尾區都偵測到橫跨一整個豐枯水期的枯旱訊號。
研究成果說明在濁水溪沖積扇的第一含水層,地下水枯旱的時間分布與區域的降雨時間分布型態明顯相關。另外,本研究以扇頂區的二水測站與上游名竹盆地的新民測站為例,建立地下水枯旱度預測模式後,投入歷年水位消退期間檢驗枯旱度預測效果。在二水測站預測的枯旱度變化結果與現實狀態一致,但新民測站受水文地質條件影響,特定水位範圍內的水位消退變化不同,需要修正預測模式以改善低水位消退期的枯旱度預測成果。
Groundwater resources have been well exploited in Zhuoshui River Alluvial Fan area for a long history, and is considered to be a vital source of water supply during dry seasons of each year. Variation in precipitation patterns has caused many extreme events in recent decades as well as impacts on groundwater recharge characteristics owing to global climate change. Further studies of historical groundwater records should be taken to meet the need of better groundwater management strategies for the future.
In the present study, Zhuoshui River Alluvial Fan is chosen as study area. Daily groundwater level monitoring records during 2001 and 2016 from 42 stations on this area are investigated in order to assess the overall groundwater level response to natural drought phenomena.
Firstly, groundwater level records from each of the stations are analyzed to detect groundwater drought events in short and long time scale using the Standardized Groundwater Index (SGI) method. Two SGI indictor, SGI180 and SGI360, time series are estimated form data composed with daily groundwater level accumulative sum for an accumulation period of 180 days and 360 days separately.
Secondly, trend of groundwater level during study period of 42 stations are evaluated with Mann-Kendall test, and an appropriate groundwater management strategy is introduced.
Finally, a prediction model is developed for the purpose of estimating future groundwater level condition beforehand. Ershui station and Xin-Min station are chosen to build model and the effectiveness of model are tested.
AMS, 2004. Statement on meteorological drought, Bull, American Meteorological Society, 85, pp.771-773.
Amirataee, B., Montaseri, M. and Sanikhani, H., 2016. The analysis of trend variations of reference evapotranspiration via eliminating the significance effect of all autocorrelation coefficients, Theoretical and Applied Climatology, 126, pp.131-139.
Bloomfield, J.P. and Marchant, B.P., 2013. Analysis of groundwater drought building on the standardised precipitation index approach, Hydrology and Earth System Sciences, 17, pp.4769-4787.
Calow R., Robins, N., Macdonald, A. and Nicol, A., 1999. Planning for groundwater drought in Africa. In: Proceedings of the International Conference on Integrated Drought Management: Lessons for Sub-Saharan Africa. IHP-V, Technical Documents in Hydrology, 35, pp. 255-270.
Chen H., Guo S., Xu C.Y., and Singh, V.P., 2007. Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin, J Hydrol , 344, 171–184.
Chen S.T., Kuo C.C., Yu P.S., 2009. Historical trends and variability of meteorological droughts in Taiwan, Hydrological Sciences Journal, 54(3), pp.430-441.
Dai A., 2011. Drought under global warming: a review, Wiley Interdiscip Rev Clim Change 2011, 2, pp.45-65.
Eltahir, E.A.B. and Yeh, P.J.F., 1999. On the asymmetric response of aquifer water level to floods and droughts in Illinois, Water Resour. Res., 35(4), pp.1199-1217.
FAO, 2002. Report of FAO-CRIDA Expert Group Consultation on Farming System and Best Practices for Drought-prone Areas of Asia and the Pacific Region. Food and Agricultural Organisation of United Nations. Published by Central Research Institute for Dryland Agriculture, Hyderabad, India.
Gumbel, E.J., 1963. Statistical forecast of droughts. Bull. Int. Assoc. Sci. Hydrol., 8(1), pp.5-23.
IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press.
Kemdall, M.G., 1975. Rank correlation methods, Charles Griffin, London.
Lloyd-Hughes, B. and Saunders, M.A., 2002. A drought climatology for Europe, Int. J. Climatol., 22, 1571–1592.
Mann, H.B., 1945. Non-parametric test against trend, Econometrica, 13, pp.245-259.
McKee, T.B., Doesken, N.J. and Leist, J., 1993. The relationship of drought frequency and duration time scales, 8th Conference on Applied Climatology, 17–22 January 1993, Anaheim, California, pp.179-184.
Mishra, A.K. and Singh V.P., 2010. A review of drought concepts, J Hydrol, 391, pp.202-216.
Nalbantis, I., 2008. Evaluation of a Hydrological Drought Index, European Water, 23(24), pp.67-77.
Palmer, W.C., 1965. Meteorologic Drought. US Department of Commerce, Weather Bureau, Research Paper No.45, pp.58.
Palmer, W.C., 1968. Keeping track of crop moisture conditions, nationwide: the new crop moisture index. Weatherwise, 21, pp.156-161.
Shafer, B.A. and Dezman, L.E., 1982. Development of a Surface Water Supply Index (SWSI) to Assess the Severity of Drought Conditions in Snowpack Runoff Areas. In: Preprints, Western SnowConf., Reno, NV, Colorado State University, pp.164-175.
Sheffield, J. and Wood, E.F., 2008. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dyn. 13, pp.79-105.
Sheffield, J., Wood, E.F. and Roderick, M.L., 2012. Little change in global drought over the past 60 years, Nature, 491, pp.435-440.
Tallaksen, L.M. and van Lanen, H.A.J., 2004. Hydrological drought Processes and estimation methods for streamflow and groundwater, Developments in Water Sciences 48, Elsevier, the Netherlands.
Tsakiris, G. and Vangelis, H., 2005. Establishing a Drought Index Incorporating Evapotran-spiration. European Water, 9(10), pp.3-11.
Taylor, R.G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J.S., Edmunds, M., Konikow, L., Green, T.R., Chen, J.Y., Taniguchi, M., Bierkens, M.F.P. MacDonald, A., Fan, Y., Maxwell, R.M., Yechieli, Y., Gurdak, J.J., Allen, D.M., Shamsudduha, M., Hiscock, K., Yeh, P.J.F., Holman, I. and Treidel, H., 2013. Ground water and climate change, NATURE CLIMATE CHANGE, 3(4), pp.322-329.
van Lanen, H.A.J. and Peters, E., 2000. Definition, effects and assessment of groundwater droughts. In: Vogt, J.V., Somma, F. (Eds.), Drought and Drought Mitigation in Europe. Kluwer Academic Publishers, Dordrecht, pp.49-61.
Wilhite, D.A. and Glantz, M.H., 1985. Understanding the drought phenomenon: the role of definitions, Water Int, 10, pp.111-120.
Wilhite, D.A., 2000. Drought: A Global Assessment, Vols. 1 and 2. 1, Routledge, New York, pp.89-104 and 2, Routledge, New York, pp.129-448.
WMO, 1986. Report on Drought and Countries Affected by Drought During 1974–1985, World Meteorological Organization, Geneva, pp.118.
Yevjevich, V., 1967. An Objective Approach to Definitions and Investigations of Continental Hydrologic Drought. Hydrology Paper No. 23, Colorado State Univ., Fort Collins, Colo.
Zargar, A., Sadiq, R., Naser B., and Khan F.I., 2011. A review of drought indices, Environmental Reviews, 19(NA), pp.333-349
台灣省水利局,1998,「台灣地區地下水觀測站網整體計畫-86至87年度-濁水溪沖積扇及屏東平原觀測站網建立及運作管理工作報告」。
江崇榮、黃智昭、陳瑞娥、費立沅,2005a,濁水溪沖積扇地下水補注區釐定,第二屆資源工程研討會論文集,92-98。
江崇榮、陳瑞娥、賴慈華、黃智昭,2005b,濁水溪沖積扇地下水區之補注水源評估,第二屆資源工程研討會論文集,82-91。
朱容練、朱吟晨、林士堯、劉俊志、陳永明,2015,國家災害防救科技中心災害防救電子報,第124期。
汪中和、郭欽慧、張鳳嬌,2004,臺灣地下水文環境的變遷,經濟部中央地質調查所彙刊,第17號,175-196。
汪中和,2007,臺灣地下水文環境的變遷,經濟部中央地質調查所彙刊,第18號,239-255。
陳正達、朱容練、許晃雄、盧孟明、隋中興、周佳、翁叔平、陳昭銘、林傳堯、鄭兆尊、吳宜昭、卓盈旻、陳重功、張雅茹、林士堯、林修立、童裕翔、楊承道,台灣氣候變遷推估研究,大氣科學,第42卷,第3期,207-251。
農業工程研究中心,1989,「集集共同引水計畫可行性規劃(二)水源及用水專題7D海水入侵數學模式之建立」,台灣省水利局。
經濟部中央地質調查所,1995,「臺灣區地下水觀測網第一期計畫八十一、八十二及八十三年度濁水溪沖積扇水文地質調查研究報告」,經濟部中央地質調查所。
經濟部中央地質調查所,1999,「台灣地區地下水觀測網第一期計畫,濁水溪沖積扇水文地質調查研究總報告」,經濟部中央地質調查所。
經濟部水資源局,1999,彙編「台灣地區地下水-濁水溪沖積扇篇」,經濟部水資源局。
經濟部水利署,2013,「名竹盆地地下水源開發調查規劃」,經濟部水利署。
經濟部水利署,2014a,「濁水溪地下水智慧型預測模式之研究」,經濟部水利署。
經濟部水利署,2014b,「地表地下水整合性數值模式運用於地下水補注規劃」,經濟部水利署。
經濟部,2014,「地下水補注地質敏感區劃定計畫書-G0001濁水溪沖積扇」。
經濟部水利署,2016a,「臺灣地區乾旱時期地下水備援用水評估系統建置」,經濟部水利署。
經濟部水利署,2016b,「高屏與嘉南集水區地下水開發區位及其可開發量評估(1/2)」,經濟部水利署。
經濟部水利署,2017,「高屏與嘉南集水區地下水開發區位及其可開發量評估(2/2)」,經濟部水利署。
經濟部水利署,2017,「中華民國105年臺灣地區水文年報」,經濟部水利署。
葉信富、張家富、李哲瑋、李振誥,2016a,以標準化地下水與降雨指數法評估高屏溪流域之乾旱特性,中華水土保持學報,第47卷,第1期,45-52。
葉信富、葉振峰、李振誥,2016b,以Mann-Kendall及Theil-Sen檢定法評估臺灣地區長期河川流量時空趨勢變化,第47卷,第2期,73-83。
鍾侑達、郭峻菖、陳昶憲,台灣區域降雨之趨勢,農業工程學報,第55卷,第4期,1-18。