| 研究生: |
蘇益弘 Su, Ying-Hung |
|---|---|
| 論文名稱: |
電漿輔助磊晶成長氮化矽薄膜之掃描穿隧顯微術研究 Scanning Tunneling Microscopic Study of Plasma-assisted Epitaxy of Silicon Nitride Thin Film |
| 指導教授: |
吳忠霖
Wu, Chung-Llin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 氮化 、電漿 |
| 外文關鍵詞: | Nitridation, Plasma, STM |
| 相關次數: | 點閱:88 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此原子解析的實驗中,我們利用氮電漿與可進行即時量測的掃描穿隧電子顯微鏡,研究高能量的氮原子源對於磊晶成長β-Si3N4薄膜在Si(111)基版的影響。比較在不同電漿氮化條件下(包括:氮化的溫度、後退火的溫度與時間)所成長的β-Si3N4磊晶薄膜的表面形貌,相較以往需要在900℃以上的高溫下進行熱氮化(thermal nitridation)過程的氮化成長,在750℃下即可使用氮電漿進行氮化成長,並可得到具有8×8重構的單晶表面,有效地降低了成長所需的溫度,且表面呈現完全氮化且沒有部份氮化的形貌。另外在室溫下電漿氮化的表面上,在進行後退火處理後,可以看到後退火處理可有效的幫助原子重新結晶排列。
The effect of energetic nitrogen source on crystalline β-Si3N4 growth on Si(111) substrate has been studied by using N2-plasma nitridation and in-situ scanning tunneling microscopy (STM). The β-Si3N4 epitaxial ultra-thin films were grown on the Si(111) substrate under different growth conditions including the nitridation temperature, annealing temperature, and annealing time. Without post-nitridation annealing, the one-step plasma nitridation growth shows the nitridation temperature can be decreased to 750 °C following the fact that the β-Si3N4(8×8) reconstruction surface having no partial nitridation area, which was much lower than previous thermal nitridation studies. Furthermore, using two-step growth, “thermal nitridation and post-nitridation annealing”, the effect of post annealing on the β-Si3N4 recrystallization has been examined on the room temperature plasma nitridation surface.
1. F. S.-S. Chien, J.-W. Chang, S.-W. Lin, Y.-C. Chou, T. T. Chen, S. Gwo, T.-S. Chao, and W.-F. Hsieh, Appl. Phys. Lett. 76,360(2000)
2. C. C. Chen, C. Y. Chang, C. H. Chien, T. Y. Huang, H. C. Lin and M. S. Liang, Appl. Phys. Lett. 74, 3708, 1999.
3. R. J. Brook, Nature 400, 312(1999)
4. C.E. Morosanu, Thin Solid Films 65, 171 (1980)
5. W. Skorupa, U. Kreissig and H. Oertal, Vacuum 36, 933(1986)
6. E. Bauer, Y. Wei, T. Muller, A. Pavlovska, and I. S. T. Tsong , Phys. Rev. B. 51,17891(1995)
7. H. Ahn, C. L. Wu, S. Gwo, C. M. Wei and Y. C. Chou, Phys. Rev. Lett. 86,2818(2001)
8. G. Zhai, J. Yang, N. Cue, and X. –S. Wang, Thin Solid Films. 366, 121(2000)
9. R. Wolkow and Ph. Avouris, Phys. Rev. Lett. 60, 1049(1998)
10. R. Yang, H. K. Fun, I. Ab. Rahman, and I. Saleh, Ceramics International . 21,137(1995)
11. Y.N Xu, W. Y. Ching, Phys. Rev. B. 51, 17379(1995)
12. Shigenobu Ogata, Naoto Hirosaki, Cenk Kocer and Yoji Shibutani, Acta Materialia, 52, 233(2004)
13. Xue-sen Wang, Guangjie Zhai, Jianshu Yang, and Nelson Cue, Phys. Rev. B. 60,2146(1999)
14. C.-L. Wu, J.-L. Hsieh, H.-D. Hsueh, and S. Gwo, Phys. Rev. B. 65, 045309(2002)
15. B. Röttger, R. Kliese, and H. NeddermeyerJ. ,Vac. Sci. Technol. B. 14, 1051 (1996)
16. R. M. C. de Almeida and I. J. R. Baumvol , Phys. Rev. B. 62 16255 (2000)
17. Donald L. Smith, “Thin-Film Deposition Principles and Practice”, McGraw-Hill, (1995)
18. G.Binnig, H.Rohrer,C. Gerber, and Weibel, Phys.Rev.Lett.49.57(1982)
19. I. Ekvallm, E. Wahlstrom, D. Claesson, H. Olin, and E. Olsson, Meas. Sci. Tec. 10,11 (1999)
20. Chun Gong, Eddy Simoen, Niels E Posthuma, Emmanuel Van Kerschaver, Jef Poortmans and Robert Mertens J. Phys. D: Appl. Phys. 43 485301(2010)