| 研究生: |
林嘉毓 Lin, Chia-Yu |
|---|---|
| 論文名稱: |
規律運動行為對中高齡女性科技接受度之影響-以社交型陪伴機器人為例 The Influence of Regular Exercise Behavior on Technology Acceptance Among Middle-Aged and Older Women: A Case of a Social Companion Robot |
| 指導教授: |
林麗娟
Lin, Linda Li-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 體育健康與休閒研究所 Institute of Physical Education, Health & Leisure Studies |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 幸福感 、孤獨感 、生活品質 、科技焦慮 、控制信念 、機器人實用性 |
| 外文關鍵詞: | well-being, loneliness, quality of life, technology anxiety, control beliefs, usefulness of robots |
| 相關次數: | 點閱:4 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:探討1.不同規律運動行為階段之中高齡女性,在個人背景、孤獨感、主觀幸福感、生活品質、自覺健康狀態與高齡科技接受度(Senior Technology Acceptance Model, STAM)指標的差異;2. 比較短時間導入社交型陪伴機器人LOVOT的科技創新人機互動介入策略後,有無規律運動行為女性對陪伴機器人之社交性與實用性之評價;及3.介入後高齡科技接受模式三個指標的影響與即時效益。
方法:本研究採用準實驗設計,招募臺灣南部地區共45位年滿55歲(平均65.18±6.22歲)、具備基本語言理解與閱讀能力且無重大認知障礙之中高齡女性參與本研究。參與者依據跨理論行為模式(Transtheoretical Model, TTM)設定為規律運動組(23人, 行動期、維持期)與未規律運動組(22人, 無意圖期、意圖期與準備期)。以問卷調查蒐集參與者個人背景(如年齡、教育程度、居住情況)、孤獨感、生活品質、主觀幸福感與自覺健康狀況等基線資料後,安排與LOVOT 社交型陪伴機器人進行單次15分鐘人機互動介入;並在互動前後,對參與者進行包括機器人社交性、實用性評估,及高齡科技接受度(STAM)態度信念、控制信念、樂齡科技焦慮三指標的變化。以描述性統計、獨立樣本 t 檢定、單因子共變數分析(one-way ANCOVA)與卡方檢定分析不同規律運動行為之中高齡女性在陪伴型機器人即時介入前後各組依變項間的差異及比較。
結果:以卡方檢定交叉比對各項基本資料,顯示規律運動者在教育程度顯著高於非規律運動者χ²= 11.08( p = .011),退休前若有規律運動習慣者,在退休後多能維持運動行為χ² = 17.75( p < .001)。以皮爾森積差相關分析各心理變項相關,顯示在生活品質與主觀幸福感(r = .625, p < .001)、自覺健康狀況(r = .579, p < .001)均有顯著相關;而主觀幸福感與自覺健康狀況(r = .789, p < .001)達顯著正相關。在評估導入社交型機器人互動後,各依變項在控制前測得分的影響後,規律運動組在機器人社交性評價提高19.4% (p = .031)、STAM控制信念提高21.35%(p = .001),STAM樂齡科技焦慮則降低28.97% (p = .002),在實用性上雖有提升2.5%但未達顯著效果;而未規律運動組在機器人在社交性評價下降-4.7%( p = .359)、實用性評價則顯著下降11.2%(p = .006)、STAM態度信念下降5.20%(p = .001)。二組相較結果顯示在與社交性機器人一次性的人機互動介入後,規律運動組在機器人社交性評價和高齡科技接受度STAM的態度信念、控制信念與樂齡科技焦慮三個變項有明顯的助益;顯示規律運動行為能夠顯著提升中高齡女性對社交型機器人的接受程度與互動意願,同時也有助於有效降低科技焦慮並增進其心理福祉。
結論與建議:本研究結果對於運動行為促進中高齡女性的健康老化與數位包容性具有實證參考價值。包括高教育程度之中高齡女性在退休後有較佳的運動階段與健康行為;其退休前規律運動與否明顯與退休後的運動行為階段有關,也支持規律運動行為具階段性與延續性。此外規律運動者在面對如社交機器人這類型的新興科技時,展現出更佳的適應力與正向態度。未來在高齡科技介入策略應更加全面地納入其運動行為、心理因素等健康背景與性別等多重考量,以回應中高齡女性在未來超高齡化社會中健康促進與數位參與方面的需求。
Purpose: This study aimed to explore (1) the differences in personal background, loneliness, subjective well-being, quality of life, perceived health status, and indicators of the Senior Technology Acceptance Model (STAM) among middle-aged and older women at different stages of regular exercise behavior; (2) the evaluation of sociability and usefulness of the social companion robot LOVOT by women with and without regular exercise behavior after their interaction with the social companion robot; and (3) the effects and immediate benefits of a brief robot companionship intervention on the three core indicators of the STAM.
Methods: A quasi-experimental design was employed with 45 middle-aged and older women recruited from communities in southern Taiwan to participate in the study. Specifically, participants were aged 55 years or above (mean age = 65.18 ± 6.22 years), possessed basic language comprehension and reading abilities, and had no major cognitive impairments. Based on the Transtheoretical Model (TTM), they were classified into a regular exercise group (N=23, in the stages of Action and Maintenance) and an irregular exercise group (N=22, in the stages of Precontemplation, Contemplation and Preparation). To begin with, the study collected baseline data through questionnaires, including demographic characteristics (e.g., age, educational level, living arrangements), loneliness, quality of life, subjective well-being, and perceived health status. Afterwards, participants were scheduled to engage in a 15-minute interaction with the social companion robot LOVOT. Pre- and post-intervention assessments were conducted to measure perceptions of sociability and usefulness of robots, as well as changes in the three key indicators of the STAM: attitudinal beliefs, control beliefs, and gerontechnology anxiety. Descriptive statistics, independent-sample t-tests, one-way analysis of covariance (ANCOVA), and Chi-square tests were applied to analyse the differences between groups in dependent variables before and after the real-time intervention of the social companion robot.
Results: Chi-square analysis of demographic variables indicated that participants in the regular exercise group had a higher level of education compared to those in the irregular exercise group (χ² = 11.08, p =.011). Furthermore, individuals who established regular exercise habits before retirement were significantly more likely to maintain those habits after retirement (χ² = 17.75, p < .001). Pearson’s correlation analysis revealed significant positive corrections between quality of life and subjective well-being (r = .625, p < .001), between quality of life and perceived health status (r = .579, p < .001), as well as between subjective well-being and perceived health status (r = .789, p < .001). Following the short-term intervention of the social companion robot LOVOT, with controlling for pre-test scores, the regular exercise group demonstrated a significant 19.4% increase in the perception of robot’s sociability and usefulness (p = .031) and a 21.35% increase in the construct of control beliefs of STAM (p < .001), along with a 28.97% reduction in gerontechnology anxiety (p = .002). While the score of perceived usefulness improved by 2.5%, it failed to reach statistical significance. In contrast, the irregular exercise group showed a significant -4.7% decrease in sociability evaluations (p = .359), a significant 11.2% decrease in perceived usefulness (p = .006), and a significant 5.20% decline in STAM attitudinal beliefs (p < .001). Comparisons between groups indicated that a one-time companionship intervention of the social companion robot produced notable benefits for the regular exercise group in terms of sociability evaluations and all three STAM indicators (attitudinal beliefs, control beliefs, and gerontechnology anxiety). These findings suggest that regular exercise behavior in middle-aged and older women significantly enhances their acceptance of technology and their willingness to interact with social companion robots, while reducing their technology anxiety and improving their psychological well-being.
Conclusions and Recommendations: The findings of this study provide empirical evidence regarding the role of exercise behavior in promoting healthy aging and digital inclusion among middle-aged and older women. Results indicate that women with higher education are more likely to engage in advanced stages of exercise and healthy behaviors after retirement, and that a strong association exists between establishing regular exercise habits before retirement and maintaining those physical activities in later life. These outcomes support the notion that exercise behavior is both stage-based and continuous. Moreover, regular exercisers demonstrated greater adaptability and more positive attitudes toward emerging technologies such as social companion robots. In response to the needs of middle-aged and older women in health promotion and digital participation in a rapidly aging society, gerontechnology strategies should integrate their unique exercise habits, psychological factors, broader health backgrounds, and gender-specific issues into the development of technologies to promote comprehensive health interventions.
內政部(2022)。銀髮安居性別下長者居住現況分析。取自 https://www.moi.gov.tw/cl.aspx?n=21244
王雅萍(2017)。高齡者參與樂齡學習中心課程之動機與滿意度研究-以高雄市為例(碩士論文)。國立高雄師範大學成人教育研究所。
林培元(2012)。以跨理論模式分析社區民眾運動行為變遷之研究。體育學報,45, 67–84。
林美慧(2019)。女性中高齡者參與終身學習之動機與自我實現探究(碩士論文)。國立中正大學成人及繼續教育研究所,嘉義。
高齡醫學暨健康福祉研究中心(2022)。高齡心理。取自 https://ageing.nhri.edu.tw/tag/%E9%AB%98%E9%BD%A1%E5%BF%83%E7%90%86/
陳依靈、邱思慈、黃國光(2017)。樂齡族參與活躍老化課程之差異分析-以嘉義市某樂齡學習中心為例。交大體育學刊,13, 1–12。取自 https://www.airitilibrary.com/Article/Detail?DocID=P20110824004-201712-201803050010-201803050010-1-12
婦女權益促進發展基金會(2018)。中高齡婦女需求評估研究報告。臺北市:衛生福利部社會及家庭署。https://www.iwomenweb.org.tw/Upload/WebArchive/4259/2018_%E4%B8%AD%E9%AB%98%E9%BD%A1%E9%9C%80%E6%B1%82%E8%A9%95%E4%BC%B0%E7%A0%94%E7%A9%B6%EF%BC%88%E6%B4%AA%E6%83%A0%E8%8A%AC%EF%BC%89.pdf
Berkman, N. D., Sheridan, S. L., Donahue, K. E., Halpern, D. J., & Crotty, K. (2011). Low health literacy and health outcomes: An updated systematic review. Annals of Internal Medicine, 155(2), 97–107. https://doi.org/10.7326/0003-4819-155-2-201107190-00005
Bowling, A. (2005). Ageing well: Quality of life in old age. Maidenhead, UK: Open University Press.
Bowling, A. (2009). The psychometric properties of the Older People's Quality of Life Questionnaire, compared with the CASP-19 and the WHOQOL-OLD. Current Gerontology and Geriatrics Research, 2009, 298950. https://doi.org/10.1155/2009/298950
Broadbent, E., Stafford, R., & MacDonald, B. (2009). Acceptance of healthcare robots for the older population: Review and future directions. International Journal of Social Robotics, 1(4), 319–330. https://doi.org/10.1007/s12369-009-0030-6
Caldwell, A. R., Thomas, E. A., Bower, J. K., & Zeng, N. (2020). Technology-based physical activity interventions in older adults: A systematic review. Journal of Aging and Physical Activity, 28(4), 583–593. https://doi.org/10.1123/japa.2019-0252
Charness, N., & Boot, W. R. (2009). Aging and information technology use: Potential and barriers. Current Directions in Psychological Science, 18(5), 253–258. https://doi.org/10.1111/j.1467-8721.2009.01647.x
Charness, N., & Boot, W. R. (2016). Technology, gaming, and social networking. In H. W. Wahl, S. I. Willis, & F. Oswald (Eds.), Handbook of the psychology of aging (8th ed., pp. 389–407). Elsevier.
Chen, K., & Chan, A. H. S. (2014). Predicting older users’ acceptance of technology based on the senior technology acceptance model (STAM). Gerontechnology, 13(1), 1–8. https://doi.org/10.4017/gt.2014.13.1.006.00
Chen, K., & Lou, Y. (2021). Developing and validating a short version of the senior technology acceptance model for smart product use. Assistive Technology, 33(6), 301–308. https://doi.org/10.1080/10400435.2019.1682082
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
Diener, E., Oishi, S., & Tay, L. (2018). Advances in subjective well-being research. Nature Human Behaviour, 2(4), 253–260. https://doi.org/10.1038/s41562-018-0307-6
Dishman, R. K., Washburn, R. A., & Heath, G. W. (2004). Physical activity epidemiology. Human Kinetics.
Eckstrom, E., Neukam, S., Kalin, L., & Wright, J. (2020). Physical activity and healthy aging. Clinics in Geriatric Medicine, 36(4), 671–683. https://doi.org/10.1016/j.cger.2020.06.006
El Khoudary, S. R., Aggarwal, B., Beckie, T. M., Hodis, H. N., Johnson, A. E., Langer, R. D., ... & Wenger, N. K. (2019). Menopause transition and cardiovascular disease risk: Implications for timing of early prevention. Circulation, 139(10), e637–e658. https://doi.org/10.1161/CIR.0000000000000668
Elavsky, S., & McAuley, E. (2007). Physical activity and mental health outcomes during menopause: A randomized controlled trial. Annals of Behavioral Medicine, 33(2), 132–142. https://doi.org/10.1007/BF02879978
Findsen, B., & Formosa, M. (2016). Lifelong learning in later life: Policies and practices. Rotterdam: Sense Publishers. https://doi.org/10.1007/978-94-6300-414-5
GROOVE X. (2023). What is LOVOT? https://lovot.life
Hall, D. L., Arditte Hall, K. A., Liverant, G., & Park, E. R. (2025). Cognitive behavioral therapy for insomnia: A transdiagnostic intervention? Sleep, 48(6), zsaf079. https://doi.org/10.1093/sleep/zsaf079
Hawkley, L. C., & Cacioppo, J. T. (2010). Loneliness matters: A theoretical and empirical review of consequences and mechanisms. Annals of Behavioral Medicine, 40(2), 218–227. https://doi.org/10.1007/s12160-010-9210-8
Heart, T., & Kalderon, E. (2013). Older adults: Are they ready to adopt health-related ICT? International Journal of Medical Informatics, 82(11), e209–e231. https://doi.org/10.1016/j.ijmedinf.2011.03.002
Holt-Lunstad, J., Smith, T. B., Baker, M., Harris, T., & Stephenson, D. (2015). Loneliness and social isolation as risk factors for mortality: A meta-analytic review. Perspectives on Psychological Science, 10(2), 227–237. https://doi.org/10.1177/1745691614568352
Kachouie, R., Sedighadeli, S., Khosla, R., & Chu, M. T. (2014). Socially assistive robots in elderly care: A mixed-method systematic literature review. International Journal of Human–Computer Interaction, 30(5), 369–393. https://doi.org/10.1080/10447318.2013.873278
Kekäläinen, T., Freund, A. M., Sipilä, S., & Kokko, K. (2020). Cross-sectional and longitudinal associations between leisure time physical activity, mental well-being and self-rated health among older adults. European Journal of Ageing, 17(1), 75–86. https://doi.org/10.1007/s10433-019-00524-6
Lyubomirsky, S., & Lepper, H. S. (1999). A measure of subjective happiness: Preliminary reliability and construct validation. Social Indicators Research, 46(2), 137–155. https://doi.org/10.1023/A:1006824100041
Lyubomirsky, S., Sheldon, K. M., & Schkade, D. (2005). Pursuing happiness: The architecture of sustainable change. Review of General Psychology, 9(2), 111–131. https://doi.org/10.1037/1089-2680.9.2.111
Marcus, B. H., Rakowski, W., & Rossi, J. S. (1992). Assessing motivational readiness and decision making for exercise. Health Psychology, 11(4), 257–261. https://doi.org/10.1037/0278-6133.11.4.257
McAuley, E., Blissmer, B., Katula, J., Duncan, T. E., & Mihalko, S. L. (2000). Physical activity, self-esteem, and self-efficacy relationships in older adults: A randomized controlled trial. Annals of Behavioral Medicine, 22(2), 131–139. https://doi.org/10.1007/BF02895777
Mitzner, T. L., Boron, J. B., Fausset, C. B., Adams, A. E., Charness, N., Czaja, S. J., ... & Rogers, W. A. (2010). Older adults talk technology: Technology usage and attitudes. Computers in Human Behavior, 26(6), 1710–1721. https://doi.org/10.1016/j.chb.2010.06.020
Nomura, T., Suzuki, T., Kanda, T., & Kato, K. (2006). Measurement of anxiety toward robots. In Proceedings of the 15th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (pp. 372–377). IEEE. https://doi.org/10.1109/ROMAN.2006.314462
Peek, S. T. M., Wouters, E. J. M., van Hoof, J., Luijkx, K. G., Boeije, H. R., & Vrijhoef, H. J. M. (2014). Factors influencing acceptance of technology for aging in place: A systematic review. International Journal of Medical Informatics, 83(4), 235–248. https://doi.org/10.1016/j.ijmedinf.2014.01.004
Pinquart, M., & Sörensen, S. (2001). Influences on loneliness in older adults: A meta-analysis. Basic and Applied Social Psychology, 23(4), 245–266. https://doi.org/10.1207/S15324834BASP2304_2
Pressman, S. D., Matthews, K. A., Cohen, S., Martire, L. M., Scheier, M. F., Baum, A., & Schulz, R. (2009). Association of enjoyable leisure activities with psychological and physical well-being. Psychosomatic Medicine, 71(7), 725–732. https://doi.org/10.1097/PSY.0b013e3181ad7978
Prochaska, J. O., & DiClemente, C. C. (1983). Stages and processes of self-change of smoking: Toward an integrative model of change. Journal of Consulting and Clinical Psychology, 51(3), 390–395. https://doi.org/10.1037/0022-006X.51.3.390
Prochaska, J. O., & Velicer, W. F. (1997). The transtheoretical model of health behavior change. American Journal of Health Promotion, 12(1), 38–48. https://doi.org/10.4278/0890-1171-12.1.38
Pu, L., Moyle, W., Jones, C., & Todorovic, M. (2023). The effectiveness of social robots for older adults: A systematic review and meta-analysis of randomized controlled studies. Journal of the American Medical Directors Association, 24(2), 210–218. https://doi.org/10.1016/j.jamda.2022.09.003
Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.
Sallis, J. F., et al. (2016). Progress in physical activity over the Olympic quadrennium. The Lancet, 388(10051), 1325–1336. https://doi.org/10.1016/S0140-6736(16)30581-5
Takada, K., Goto, Y., Tsuji, T., & Ogata, T. (2023). Estimating the degree of attachment to a home robot using its activity logs. Advanced Robotics, 37(5), 242–254. https://doi.org/10.1080/01691864.2023.2181789
Tan, C. K. K., Ang, S. M., Tan, L. F., & Wee, S. L. (2023). Technology acceptance of a social robot (LOVOT) among single older adults in Hong Kong and Singapore: Protocol for a multimethod study. JMIR Research Protocols, 12(1), e48618. https://doi.org/10.2196/48618
Tan, C. K., Lou, V. W. Q., Cheng, C. Y. M., He, P. C., Chiu, Y. C., & Fong, D. Y. T. (2024). Improving the social well-being of single older adults using the LOVOT social robot: Qualitative phenomenological study. JMIR Human Factors, 11(1), e56669. https://doi.org/10.2196/56669
Vaportzis, E., Clausen, M. G., & Gow, A. J. (2017). Older adults’ perceptions of technology and barriers to interacting with tablet computers: A focus group study. Frontiers in Psychology, 8, 1687. https://doi.org/10.3389/fpsyg.2017.01687
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540
von Wagner, C., Knight, K., Steptoe, A., & Wardle, J. (2007). Functional health literacy and health-promoting behaviour in a national sample of British adults. Journal of Epidemiology & Community Health, 61(12), 1086–1090. https://doi.org/10.1136/jech.2006.053967
Ware, J. E., Jr. (2000). SF-36 health survey update. Spine, 25(24), 3130–3139. https://doi.org/10.1097/00007632-200012150-00008
Wejnert, B. (2002). Integrating models of diffusion of innovations: A conceptual framework. Annual Review of Sociology, 28, 297–326. https://doi.org/10.1146/annurev.soc.28.110601.141051
World Health Organization. (2021). Decade of healthy ageing: Baseline report. https://www.who.int/publications/i/item/9789240017900
Zarulli, V., & Caswell, H. (2024). Longer healthy life, but for how many? A stochastic analysis of healthy lifespan inequality. Annals of Operations Research. Advance online publication. https://doi.org/10.1007/s10479-024-06203-1
校內:2030-08-27公開