| 研究生: |
黃冠傑 Huang, Guan-Jie |
|---|---|
| 論文名稱: |
利用聲光調製器達成GHz範圍的頻率調變 Achieving Gigahertz-Range Frequency Modulation Using an Acousto-Optic Modulator |
| 指導教授: |
管培辰
Kuan, Pei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 電磁波誘發透明 、聲光調製器 、電光調製器 |
| 外文關鍵詞: | Electromagnetically Induced Transparency (EIT), Acousto-Optic Modulator(AOM), Electro-Optical Modulator(EOM) |
| 相關次數: | 點閱:22 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們參考一組新的雷射頻率偏移方案,透過飽和吸收回饋系統偏移80MHz,在此基礎上使用一個12次通過的204.64 MHz 聲光調製器 (AOM, Acousto-Optic Modulator)。為了提高我們進行熱銣原子實驗中電磁波誘發透明(EIT, Electromagnetically Induced Transparency)量測 EIT 訊號的頻率穩定性以及更窄的線寬變化,相較於電光調製器(EOM, Electro-Optical Modulator) 產生的頻率位移,再透過 Etalon 濾波器,所產生的不穩定度,這個AOM系統相較於傳統的聲光調製方案展現出更佳的穩定度。
入射雷射光束被一組12次通過的204.64 MHz 聲光調製器,探測光的頻率被偏移2.45568 GHz,再經過 2 次通過的 210 MHz 聲光調製器和單通 80 MHz 聲光調製器作為開關。最終,兩道光之間的頻率差值可精確對應於銣85原子D1-Line超精細結構中F=2到F=3的能階位移。
We adopt a laser frequency-shifting scheme in which an initial offset of 80 MHz is introduced via a saturated absorption feedback system. Building upon this, we implement a 12-pass 204.64 MHz acousto-optic modulator (AOM) to enhance the frequency stability and spectral purity of the electromagnetically induced transparency (EIT) signals observed in a thermal 85Rb vapor cell. Compared to the frequency shifts generated by an electro-optic modulator (EOM), the 12-pass AOM scheme exhibits improved long-term stability, owing to the lower sensitivity of AOMs to temperature drifts and drive-voltage fluctuations, and induces less residual amplitude modulation, leading to a narrower effective EIT linewidth.
In our setup, the incident laser beam is up-shifted by 2.45568 GHz after twelve passes through the 204.64 MHz AOM. The beam then traverses a secondary 210 MHz AOM in a double-pass configuration, adding 420 MHz, and subsequently passes through a single-pass 80 MHz AOM. The net shift of about 2.95568 GHz closely matches the ground-state hyperfine splitting between the F = 2 and F = 3 levels of the 85Rb D1 transition, thereby establishing precise two-photon resonance conditions for the Λ-type EIT.
By combining a large total frequency shift, superior stability, and ease of tuning in a compact optical layout, the 12-pass AOM system provides a robust alternative to conventional single-pass AOM or EOM solutions for high-resolution EIT experiments.
[1] Lene Vestergaard Hau, Stephen E. Harris, Zachary Dutton, and Cyrus H. Behroozi.Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature,397(6720):594–598, 1999.
[2] Dmitry Budker and Michael Romalis.Optical magnetometry. Nature Physics, 3(4):227–234, 2007.
[3] Michael Fleischhauer, Atac Imamoglu, and Jonathan P. Marangos.Electromagnetically induced transparency: Optics in coherent media. Reviews of Modern Physics,77(2):633–673, 2005.
[4] Jieping Xu and Robert Stroud.Acousto-optic devices: Principles, design, and applications. Wiley, 1992.
[5] Chao Zhou, Chuan He, Si-Tong Yan, Yu-Hang Ji, Lin Zhou, Jin Wang, and Ming-Sheng Zhan.Laser frequency shift up to 5 GHz with a high-efficiency 12-pass 350 MHz acousto-optic modulator.Review of Scientific Instruments, 91(3):033201, 2020.
[6] Christopher J. Foot.Atomic Physics, volume 7. Oxford University Press, 2005.
[7] Harold J. Metcalf and Peter van der Straten.Laser Cooling and Trapping. Springer Science & Business Media, 1999.
[8] Daniel A. Steck.Rubidium 87 D line data, 2001. Revision available online at: http://steck.us/alkalidata.
[9] Amnon Yariv.An Introduction to Theory and Applications of Quantum Mechanics. Courier Corporation, 2013.
[10] Yanhong Xiao, Irina Novikova, David F. Phillips, and Ronald L. Walsworth.Diffusion-induced Ramsey narrowing. Physical Review Letters, 96(4):043601, 2006.
[11] K.-J. Boller, A. Imamoglu, and Stephen E. Harris.Observation of electromagnetically induced transparency. Physical Review Letters, 66(20):2593, 1991.
[12] Michael M. Kash, Vladimir A. Sautenkov, Alexander S. Zibrov, Leo Hollberg,George R. Welch, Mikhail D. Lukin, Yuri Rostovtsev, Edward S. Fry, and Marlan O. Scully.Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas.Physical Review Letters, 82(26):5229, 1999.
[13] Michael Fleischhauer and Mikhail D. Lukin.Dark-state polaritons in electromagnetically induced transparency. Physical Review Letters, 84(22):5094, 2000.
[14] R. H. Dicke.The effect of collisions upon the Doppler width of spectral lines. Physical Review, 89(2):472, 1953.
[15] M. D. Lukin.Colloquium: Trapping and manipulating photon states in atomic ensembles. Reviews of Modern Physics,75(2):457, 2003.
[16] Marlan O. Scully and M. Suhail Zubairy.Quantum Optics. Cambridge University Press, 1997.
[17] George B. Arfken, Hans J. Weber, and Frank E. Harris.Mathematical Methods for Physicists: A Comprehensive Guide. Academic Press, 2011.
[18] Bahaa E. A. Saleh and Malvin Carl Teich.Fundamentals of Photonics, 2-volume set. John Wiley & Sons, 2019.
[19] W. Demtröder.Laser spectroscopy: Basic concepts and instrumentation. NASA STI/Recon Technical Report A, 82:12273, 1981.
[20] Igor Dotsenko.Raman spectroscopy of single atoms. Diplom Thesis, Bonn University, 2002.
[21] Ran Finkelstein, Samir Bali, Ofer Firstenberg, and Irina Novikova.A practical guide to electromagnetically induced transparency in atomic vapor. New Journal of Physics,25(3):035001, 2023.
[22] Ali Javan, Olga Kocharovskaya, Hwang Lee, and Marlan O. Scully.Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium.Physical Review A, 66(1):013805, 2002.
[23] M. Shuker, Ofer Firstenberg, Rami Pugatch, A. Ben-Kish, A. Ron, and Nir Davidson.Angular dependence of Dicke-narrowed electromagnetically induced transparency resonances.Physical Review A, 76(2):023813, 2007.
[24] Thomas F. Gallagher.Rydberg atoms. Reports on Progress in Physics, 51(2):143, 1988.
[25] Ofer Firstenberg, M. Shuker, A. Ben-Kish, D. R. Fredkin, Nir Davidson, and A. Ron.Theory of Dicke narrowing in coherent population trapping. Physical Review A, 76(1):013818, 2007.
[26] M. Shuker, O. Firstenberg, R. Pugatch, A. Ben-Kish, A. Ron, and N. Davidson.Measurement of Dicke narrowing in electromagnetically induced transparency. arXiv preprint, quant-ph/0702254, 2007.
[27] Norman F. Ramsey.A molecular beam resonance method with separated oscillating fields. Physical Review, 78(6):695, 1950.
[28] Yanhong Xiao, Irina Novikova, David F. Phillips, and Ronald L. Walsworth.Repeated interaction model for diffusion-induced Ramsey narrowing. Optics Express, 16(18):14128–14141, 2008.
[29] Ofer Firstenberg, M. Shuker, Rami Pugatch, D. R. Fredkin, Nir Davidson, and A. Ron.Theory of thermal motion in electromagnetically induced transparency: Effects of diffusion,Doppler broadening, and Dicke and Ramsey narrowing. Physical Review A, 77(4):043830, 2008.
[30] Jason Bowie, Jack Boyce, and Raymond Chiao.Saturated-absorption spectroscopy of weak-field Zeeman splittings in rubidium. Journal of the Optical Society of America B,12(10):1839–1842, 1995.
[31] Derek Ainslie Jackson.The hyperfine structure of the lines of the arc spectrum of rubidium. Proceedings of the Royal Society of London. Series A,139(839):673–682, 1933.
[32] Max Born and Emil Wolf.Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Elsevier, 2013.
[33] Armen Sargsyan, Rodolphe Momier, Claude Leroy, and David Sarkisyan.Influence of buffer gas on the formation of N-resonances in rubidium vapors. Spectrochimica Acta Part B: Atomic Spectroscopy,221:107051, 2024.