簡易檢索 / 詳目顯示

研究生: 歐晏伶
Ou, Yen-Ling
論文名稱: 探討Survivin運用於心肌再生之潛能
The potential of using survivin for myocardial regeneration
指導教授: 黃朝慶
Huang, Chao-Ching
謝清河
Hsieh, C.H. Patrick
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 46
中文關鍵詞: 有絲分裂細胞凋亡心肌再生心肌梗塞
外文關鍵詞: cardiomyocyte, apoptosis, myocardial infarction, survivin, mitosis
相關次數: 點閱:97下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據統計,心臟衰竭在已開發國家中高居十大死因的第一名,而造成心臟衰竭的主要原因是來自冠狀動脈心臟病 (即心肌梗塞)。心肌梗塞會造成心肌細胞因缺血而死亡,以致心室功能不全,最後導致心臟衰竭。由於心臟在成人體內幾乎是無法再生的器官,因此心臟再生醫學的主要目的即是保護存活的心肌細胞免於死亡,同時希望也能夠使心臟再生新的細胞,減低急性或慢性的心肌損壞,以減少心臟病患的死亡。
    Survivin 是一個只會在胚胎時期以及癌細胞中大量表現的蛋白質,在正常成人體內已分化的器官並不會表達。研究顯示,survivin 具有抗細胞凋亡與促進細胞有絲分裂的雙重功能,但目前對survivin 於心臟方面的研究仍十分有限。我們先前的研究發現心臟專一性缺乏survivin 的基因剃除小鼠具有心臟表型的缺失,有早期死亡的趨勢,與較差的心臟功能。進一步探討原因發現可能是由於心臟細胞的分裂比率較正常小鼠來得低的緣故。根據這個重要的發現,我假設利用survivin 可以保護心肌細胞甚至修復受損的心臟。
    在本研究中,我首先探討survivin 在正常發育過程的胚胎以及出生後大鼠的心臟中的表現情形,結果發現survivin 在胚胎中以及出生後14 天之內的心的中皆有表達,且其表現量隨著出生天數增加而下降。我也利用動脈節紮的方法製造大鼠的心肌梗塞,之後在不同的時間點分析survivin 的表現情形,結果發現survivin 在實驗組中的表現量在術後七天之內有重新被誘導的現象,但在術後十四天之後及對照組中皆無法偵測到survivin 的蛋白質表現。因為先前的實驗結果顯示survivin 能夠促進體外心肌細胞的DNA 含量,也可抑制藥物所誘導的心肌細胞死亡,因而我也探討了survivin 在心肌細胞中是透過怎樣的機制執行它的功能。利用流式細胞儀分析,我發現過度表現survivin 的心肌細胞進入有絲分裂期的比例較高,調控細胞分裂的重要分子Aurora B 的表達也有上升的趨勢;但在探討survivin 對於抗細胞凋亡蛋白caspase-3 的實驗中,卻未發現對caspase-3 的表達有任何明顯的影響。因此,我未來的研究重點除了繼續探討survivin 對於心肌細胞分裂的分子機制之外,也將先釐清心肌細胞死亡的模式,以選定特定的細胞凋亡分子進行研究。另一方面,我也將著手進行動物實驗,探究survivin 是否可以在心肌梗塞之後保護心臟的功能,同時也促進受損的心臟修復以及再生。

    The dominant cause of heart failure is regional loss of myocardium due to coronary artery disease. In the ischemic region, cardiomyocytes undergo necrosis and apoptosis
    and are not adequately replaced, leading to scar formation and ultimately, loss of ventricular function. Myocardial regeneration aims at protecting cardiomyocyte death and regrowing new cardiomyocytes to improve cardiac performance. However, this enthusiasm is frequently challenged by the fact that the mammalian heart, a terminally differentiated organ, is incapable of spontaneous regeneration.
    Survivin is the smallest member of the inhibitor of apoptosis protein (IAP) family. Previous studies have shown that survivin is a key modulator of apoptosis inhibition and cell cycle progression in cancer cells. However, the function of survivin in the heart is largely unknown. Through a cardiac specific survivin deletion using Cre-Lox system, we have recently reported that survivin may modulate cardiac function in mice through regulating the amount of cardiomyocytes. In vitro, adenoviral overexpression of survivin also protects cardiomyocytes from apoptosis, induces DNA synthesis and promotes cell cycle progression. Using immunohistochemistry and Western blotting, I found that survivin was highly expressed in the developing mouse hearts but not in the hearts 14 days after birth or older. Interestingly, I also detected the re-activation of survivin in the peri-infarcted myocardium following experimental myocardial infarction. To explore the underlying mechanisms of survivin in regulating cardiomyocyte mitosis and apoptosis, I investigated key molecules controlling cardiomyocyte growth. I found that the mRNA level of Aurora-B and cyclin-A, among more than 10 genes examined, was significantly increased in cultured cardiomyocytes after adenoviral overexpression of survivin for 24 or 48 hours. Together these results suggest a true potential of manipulating survivin for cardiac protection and possibly, cardiac regeneration.

    Abstract in English I Abstract in Chinese III Acknowledgement V Index of figures and tables VIII Index of appendixes IX Chapter 1: Introduction 1 1.1 Congestive heart failure 1 1.2 Cardiomyocyte apoptosis in heart failure 1 1.3 Apoptosis pathways of cardiomyocyte 2 1.4 Controlling cardiomyocyte death and growth for myocardial regeneration 3 1.5 The inhibitor of apoptosis protein (IAP) family 4 1.6 Survivin 5 1.7 The roles of survivin in cell death 6 1.8 The roles of survivin in cell division 7 1.9 The roles of survivin in vascular injury and in the heart 7 Chapter 2: Materials and methods 13 2.1 Experimental myocardial infarction 13 2.2 Primary culture of neonatal cardiomyocytes 13 2.3 Western blotting 13 2.4 Immunohistochemistry 14 2.5 Flow cytometry 15 2.6 Apoptosis assay 15 2.7 Reverse transcription polymerase chain reaction (RT-PCR) 16 2.7.1 RNA extraction 16 2.7.2 Reverse transcription 16 2.7.3 Polymerase chain reaction (PCR) 17 Chapter 3: Results 18 3.1 Survivin is expressed in the developing heart and in the infarcted myocardium 18 3.2 Transient overexpression of survivin prevents apoptosis and induces DNA synthesis and cell cycle progression in cardiomyocytes 18 3.3 Overexpression of survivin inhibits cardiomyocyte apoptosis through a caspase-3 independent pathway 19 3.4 Overexpression of survivin induces Aurora B and cyclin A expression in cardiomyocytes 19 Figures 21 Chapter 4: Discussion 30 References 34

    Abbate, A., Scarpa, S., Santini, D., Palleiro, J., Vasaturo, F., Miller, J., Morales, C., Vetrovec, G.W., and Baldi, A. (2006). Myocardial expression of survivin, an apoptosis inhibitor, in aging and heart failure. An experimental study in the spontaneously hypertensive rat. Int J Cardiol 111, 371-376.
    Altieri, D.C. (2001). The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol Med 7, 542-547.
    Altieri, D.C. (2008). Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 8, 61-70.
    Ambrosini, G., Adida, C., and Altieri, D.C. (1997). A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3, 917-921.
    Ambrosini, G., Adida, C., Sirugo, G., and Altieri, D.C. (1998). Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J Biol Chem 273, 11177-11182.
    Banks, D.P., Plescia, J., Altieri, D.C., Chen, J., Rosenberg, S.H., Zhang, H., and Ng, S.C. (2000). Survivin does not inhibit caspase-3 activity. Blood 96, 4002-4003.
    Blanc-Brude, O.P., Yu, J., Simosa, H., Conte, M.S., Sessa, W.C., and Altieri, D.C. (2002). Inhibitor of apoptosis protein survivin regulates vascular injury. Nat Med 8, 987-994.
    Boatright, K.M., Renatus, M., Scott, F.L., Sperandio, S., Shin, H., Pedersen, I.M., Ricci, J.E., Edris, W.A., Sutherlin, D.P., Green, D.R., et al. (2003). A unified model for apical caspase activation. Mol Cell 11, 529-541.
    Capi, O., and Gepstein, L. (2006). Myocardial regeneration strategies using human embryonic stem cell-derived cardiomyocytes. J Control Release 116, 211-218.
    Chai, J., Du, C., Wu, J.W., Kyin, S., Wang, X., and Shi, Y. (2000). Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406, 855-862.
    Cohn, J.N. (1997). Overview of the treatment of heart failure. Am J Cardiol 80, 2L-6L.
    Danial, N.N., and Korsmeyer, S.J. (2004). Cell death: critical control points. Cell 116, 205-219.
    Deveraux, Q.L., and Reed, J.C. (1999). IAP family proteins--suppressors of apoptosis. Genes Dev 13, 239-252.
    Deveraux, Q.L., Stennicke, H.R., Salvesen, G.S., and Reed, J.C. (1999). Endogenous inhibitors of caspases. J Clin Immunol 19, 388-398.
    Diaz, N., Minton, S., Cox, C., Bowman, T., Gritsko, T., Garcia, R., Eweis, I., Wloch, M., Livingston, S., Seijo, E., et al. (2006). Activation of stat3 in primary tumors from high-risk breast cancer patients is associated with elevated levels of activated SRC and survivin expression. Clin Cancer Res 12, 20-28.
    Dimmeler, S., Zeiher, A.M., and Schneider, M.D. (2005). Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 115, 572-583.
    Douglas Grossman1, P.J.K., Olivier P. Blanc-Brude2, Douglas E. Brash3, Simona Tognin4, Pier Carlo Marchisio4 and Dario C. Altieri2 (2001). Transgenic expression of survivin in keratinocytes counteracts UVB-induced apoptosis and cooperates with loss of p53. J Clin Invest.
    Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000). Smac, a Mitochondrial Protein that Promotes Cytochrome c-Dependent Caspase Activation by Eliminating IAP Inhibition. Cell 102, 33-42.
    Engel, F.B., Schebesta, M., Duong, M.T., Lu, G., Ren, S., Madwed, J.B., Jiang, H., Wang, Y., and Keating, M.T. (2005). p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev 19, 1175-1187.
    Fisher, S.A., Langille, B.L., and Srivastava, D. (2000). Apoptosis During Cardiovascular Development. Circ Res 87, 856-864.
    Francis, G.S., and Cohn, J.N. (1990). Heart failure: mechanisms of cardiac and vascular dysfunction and the rationale for pharmacologic intervention. FASEB J 4, 3068-3075.
    Gottlieb, R.A., Burleson, K.O., Kloner, R.A., Babior, B.M., and Engler, R.L. (1994). Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94, 1621-1628.
    Honda, R., Korner, R., and Nigg, E.A. (2003). Exploring the functional interactions between Aurora B, INCENP, and survivin in mitosis. Mol Biol Cell 14, 3325-3341.
    Hsieh, P.C., Davis, M.E., Gannon, J., MacGillivray, C., and Lee, R.T. (2006). Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J Clin Invest 116, 237-248.
    Islam, A., Kageyama, H., Takada, N., Kawamoto, T., Takayasu, H., Isogai, E., Ohira, M., Hashizume, K., Kobayashi, H., Kaneko, Y., et al. (2000). High expression of Survivin, mapped to 17q25, is significantly associated with poor prognostic factors and promotes cell survival in human neuroblastoma. Oncogene 19, 617-623.
    Jeremias, I., Kupatt, C., Martin-Villalba, A., Habazettl, H., Schenkel, J., Boekstegers, P., and Debatin, K.M. (2000). Involvement of CD95/Apo1/Fas in Cell Death After Myocardial Ischemia. Circulation 102, 915-920.
    Jessup, M., and Brozena, S. (2003). Heart failure. N Engl J Med 348, 2007-2018.
    Kajstura J, C.W., Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P. (1996). Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74, 86-107.
    Kuhn, B., del Monte, F., Hajjar, R.J., Chang, Y.S., Lebeche, D., Arab, S., and Keating, M.T. (2007). Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 13, 962-969.
    Levkau, B., Schafers, M., Wohlschlaeger, J., von Wnuck Lipinski, K., Keul, P., Hermann, S., Kawaguchi, N., Kirchhof, P., Fabritz, L., Stypmann, J., et al. (2008). Survivin Determines Cardiac Function by Controlling Total Cardiomyocyte Number. Circulation 117, 1583-1593.
    Li, F., Ackermann, E.J., Bennett, C.F., Rothermel, A.L., Plescia, J., Tognin, S., Villa, A., Marchisio, P.C., and Altieri, D.C. (1999). Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol 1, 461-466.
    Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., and Altieri, D.C. (1998). Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396, 580-584.
    Mahotka, C., Liebmann, J., Wenzel, M., Suschek, C.V., Schmitt, M., Gabbert, H.E., and Gerharz, C.D. (2002). Differential subcellular localization of functionally divergent survivin splice variants. Cell Death Differ 9, 1334-1342.
    Mahotka, C., Wenzel, M., Springer, E., Gabbert, H.E., and Gerharz, C.D. (1999). Survivin-deltaEx3 and survivin-2B: two novel splice variants of the apoptosis inhibitor survivin with different antiapoptotic properties. Cancer Res 59, 6097-6102.
    Majno, G., and Joris, I. (1995). Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146, 3-15.
    Matsui, T., Tao, J., del Monte, F., Lee, K.H., Li, L., Picard, M., Force, T.L., Franke, T.F., Hajjar, R.J., and Rosenzweig, A. (2001). Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 104, 330-335.
    Muchmore, S.W., Chen, J., Jakob, C., Zakula, D., Matayoshi, E.D., Wu, W., Zhang, H., Li, F., Ng, S.C., and Altieri, D.C. (2000). Crystal structure and mutagenic analysis of the inhibitor-of-apoptosis protein survivin. Mol Cell 6, 173-182.
    Narula, J., Pandey, P., Arbustini, E., Haider, N., Narula, N., Kolodgie, F.D., Dal Bello, B., Semigran, M.J., Bielsa-Masdeu, A., Dec, G.W., et al. (1999). Apoptosis in heart failure: Release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proceedings of the National Academy of Sciences 96, 8144-8149.
    O'Connor, D.S., Grossman, D., Plescia, J., Li, F., Zhang, H., Villa, A., Tognin, S., Marchisio, P.C., and Altieri, D.C. (2000). Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proceedings of the National Academy of Sciences 97, 13103-13107.
    Ohno, M., Takemura, G., Ohno, A., Misao, J., Hayakawa, Y., Minatoguchi, S., Fujiwara, T., and Fujiwara, H. (1998). "Apoptotic" myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation: analysis by immunogold electron microscopy combined with In situ nick end-labeling. Circulation 98, 1422-1430.
    Olie, R.A., Simoes-Wust, A.P., Baumann, B., Leech, S.H., Fabbro, D., Stahel, R.A., and Zangemeister-Wittke, U. (2000). A Novel Antisense Oligonucleotide Targeting Survivin Expression Induces Apoptosis and Sensitizes Lung Cancer Cells to Chemotherapy. Cancer Res 60, 2805-2809.
    Pennati, M., Binda, M., Colella, G., Folini, M., Citti, L., Villa, R., Daidone, M.G., and Zaffaroni, N. (2003). Radiosensitization of Human Melanoma Cells by Ribozyme-Mediated Inhibition of Survivin Expression. 120, 648-654.
    Pfeffer, M.A. (1995). Left ventricular remodeling after acute myocardial infarction. Annu Rev Med 46, 455-466.
    Poss, K.D., Wilson, L.G., and Keating, M.T. (2002). Heart regeneration in zebrafish. Science 298, 2188-2190.
    Riedl, S.J., and Shi, Y. (2004). Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5, 897-907.
    Ruchaud, S., Carmena, M., and Earnshaw, W.C. (2007). Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 8, 798-812.
    Salvesen, G.S., and Duckett, C.S. (2002). IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 3, 401-410.
    Santini, D., Abbate, A., Scarpa, S., Vasaturo, F., Biondi-Zoccai, G.G., Bussani, R., De Giorgio, F., Bassan, F., Camilot, D., Di Marino, M.P., et al. (2004). Surviving acute myocardial infarction: survivin expression in viable cardiomyocytes after infarction. J Clin Pathol 57, 1321-1324.
    Schwartz, K., Chassagne, C., and Boheler, K.R. (1993). The molecular biology of heart failure. J Am Coll Cardiol 22, 30A-33A.
    Shankar, S.L., Mani, S., O'Guin, K.N., Kandimalla, E.R., Agrawal, S., and Shafit-Zagardo, B. (2001). Survivin inhibition induces human neural tumor cell death through caspase-independent and -dependent pathways. Journal of Neurochemistry 79, 426-436.
    Shi, Y. (2002). A conserved tetrapeptide motif: potentiating apoptosis through IAP-binding. Cell Death Differ 9, 93-95.
    Shin, S., Sung, B.J., Cho, Y.S., Kim, H.J., Ha, N.C., Hwang, J.I., Chung, C.W., Jung, Y.K., and Oh, B.H. (2001). An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry 40, 1117-1123.
    Song, Z., Yao, X., and Wu, M. (2003). Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J Biol Chem 278, 23130-23140.
    Srinivasula, S.M., Hegde, R., Saleh, A., Datta, P., Shiozaki, E., Chai, J., Lee, R.A., Robbins, P.D., Fernandes-Alnemri, T., Shi, Y., et al. (2001). A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410, 112-116.
    Srivastava, D., and Ivey, K.N. (2006). Potential of stem-cell-based therapies for heart disease. Nature 441, 1097-1099.
    Uren, A.G., Wong, L., Pakusch, M., Fowler, K.J., Burrows, F.J., Vaux, D.L., and Choo, K.H. (2000). Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr Biol 10, 1319-1328.
    Verdecia, M.A., Huang, H.-k., Dutil, E., Kaiser, D.A., Hunter, T., and Noel, J.P. (2000). Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat Struct Mol Biol 7, 602-608.
    Vong, Q.P., Cao, K., Li, H.Y., Iglesias, P.A., and Zheng, Y. (2005). Chromosome alignment and segregation regulated by ubiquitination of survivin. Science 310, 1499-1504.
    Wang, X. (2001). The expanding role of mitochondria in apoptosis. Genes Dev 15, 2922-2933.
    Wheatley, S.P., Carvalho, A., Vagnarelli, P., and Earnshaw, W.C. (2001). INCENP is required for proper targeting of Survivin to the centromeres and the anaphase spindle during mitosis. Curr Biol 11, 886-890.
    Wheatley, S.P., Henzing, A.J., Dodson, H., Khaled, W., and Earnshaw, W.C. (2004). Aurora-B phosphorylation in vitro identifies a residue of survivin that is essential for its localization and binding to inner centromere protein (INCENP) in vivo. J Biol Chem 279, 5655-5660.
    Xia, C., Xu, Z., Yuan, X., Uematsu, K., You, L., Li, K., Li, L., McCormick, F., and Jablons, D.M. (2002). Induction of Apoptosis in Mesothelioma Cells by Antisurvivin Oligonucleotides. Mol Cancer Ther 1, 687-694.
    Zwerts, F., Lupu, F., De Vriese, A., Pollefeyt, S., Moons, L., Altura, R.A., Jiang, Y., Maxwell, P.H., Hill, P., Oh, H., et al. (2007). Lack of endothelial cell survivin causes embryonic defects in angiogenesis, cardiogenesis, and neural tube closure. Blood 109, 4742-4752.

    下載圖示 校內:2011-07-29公開
    校外:2013-07-29公開
    QR CODE