| 研究生: |
沈紫蓮 Shen, Zi-Lian |
|---|---|
| 論文名稱: |
以銫鉛溴化物鈣鈦礦量子點包覆之微米球的迴廊共振腔雷射特性 Whispering-gallery-mode lasing characteristics of microspheres coated with CsPbBr3 perovskite quantum dots |
| 指導教授: |
徐旭政
Hsu, Hsu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 無機銫鉛鹵化物鈣鈦量子點 、迴廊共振腔 、米氏散射 、牛頓迭代法 |
| 外文關鍵詞: | All-inorganic cesium lead halide perovskite quantum dots, Whispering gallery mode, Mie scattering, Newton's iterative method |
| 相關次數: | 點閱:144 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] C. Zheng, C. Bi, F. Huang, D. Binks, and J. Tian, "Stable and strong emission CsPbBr3 quantum dots by surface engineering for high-performance optoelectronic films," ACS applied materials & interfaces, vol. 11, no. 28, pp. 25410-25416, 2019.
[2] H.-R. Kim et al., "Cesium lead bromide (CsPbBr3) perovskite quantum dot-based photosensor for chemiluminescence immunoassays," ACS Applied Materials & Interfaces, vol. 13, no. 25, pp. 29392-29405, 2021.
[3] S. Zhou, R. Tang, and L. Yin, "Slow‐photon‐effect‐induced photoelectrical‐conversion efficiency enhancement for carbon‐quantum‐dot‐sensitized inorganic CsPbBr3 inverse opal perovskite solar cells," Advanced Materials, vol. 29, no. 43, p. 1703682, 2017.
[4] A. Shinde, R. Gahlaut, and S. Mahamuni, "Low-temperature photoluminescence studies of CsPbBr3 quantum dots," The Journal of Physical Chemistry C, vol. 121, no. 27, pp. 14872-14878, 2017.
[5] K. Shen et al., "Flexible and self‐powered photodetector arrays based on all‐inorganic CsPbBr3 quantum dots," Advanced Materials, vol. 32, no. 22, p. 2000004, 2020.
[6] X. Du et al., "High-quality CsPbBr 3 perovskite nanocrystals for quantum dot light-emitting diodes," RSC advances, vol. 7, no. 17, pp. 10391-10396, 2017.
[7] S. Yakunin et al., "Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites," Nature communications, vol. 6, no. 1, p. 8056, 2015.
[8] G.-B. Huang et al., "Colorimetric Determination of Chloridion in Domestic Water Based on the Wavelength Shift of CsPbBr 3 Perovskite Nanocrystals via Halide Exchange," Journal of Analysis and Testing, vol. 5, pp. 3-10, 2021.
[9] Q. Chen et al., "Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications," Nano Today, vol. 10, no. 3, pp. 355-396, 2015.
[10] M. García-Hernández, G. Chadeyron, D. Boyer, A. García-Murillo, F. Carrillo-Romo, and R. Mahiou, "Hydrothermal synthesis and characterization of Europium-doped barium titanate nanocrystallites," Nano-Micro Letters, vol. 5, pp. 57-65, 2013.
[11] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the american chemical society, vol. 131, no. 17, pp. 6050-6051, 2009.
[12] Y. Zhou et al., "A brief review on metal halide perovskite photocatalysts: History, applications and prospects," Journal of Alloys and Compounds, p. 165062, 2022.
[13] NREL. "Best PCE of research-cell chart." https://www.nrel.gov/pv/cell-efficiency.html (accessed.
[14] B. Ehrler, E. Alarcón-Lladó, S. W. Tabernig, T. Veeken, E. C. Garnett, and A. Polman, "Photovoltaics reaching for the Shockley–Queisser limit," ed: ACS Publications, 2020.
[15] Z.-K. Tan et al., "Bright light-emitting diodes based on organometal halide perovskite," Nature nanotechnology, vol. 9, no. 9, pp. 687-692, 2014.
[16] G. Xing et al., "Low-temperature solution-processed wavelength-tunable perovskites for lasing," Nature materials, vol. 13, no. 5, pp. 476-480, 2014.
[17] A. I. Ekimov and A. A. Onushchenko, "Quantum size effect in three-dimensional microscopic semiconductor crystals," ZhETF Pisma Redaktsiiu, vol. 34, p. 363, 1981.
[18] V. Soloviev, A. Eichhöfer, D. Fenske, and U. Banin, "Molecular limit of a bulk semiconductor: Size dependence of the “band gap” in CdSe cluster molecules," Journal of the American Chemical Society, vol. 122, no. 11, pp. 2673-2674, 2000.
[19] N. Kirstaedter et al., "Low threshold, large To injection laser emission from (InGa) As quantum dots," Electronics Letters, vol. 30, no. 17, pp. 1416-1417, 1994.
[20] C. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites," Journal of the American Chemical Society, vol. 115, no. 19, pp. 8706-8715, 1993.
[21] J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, "Quantum dot light‐emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)," Advanced materials, vol. 27, no. 44, pp. 7162-7167, 2015.
[22] G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Annalen der physik, vol. 330, no. 3, pp. 377-445, 1908.
[23] C. Garrett, W. Kaiser, and W. Bond, "Stimulated emission into optical whispering modes of spheres," Physical Review, vol. 124, no. 6, p. 1807, 1961.
[24] A. Ashkin and J. Dziedzic, "Observation of resonances in the radiation pressure on dielectric spheres," Physical Review Letters, vol. 38, no. 23, p. 1351, 1977.
[25] R. Benner, P. Barber, J. Owen, and R. Chang, "Observation of structure resonances in the fluorescence spectra from microspheres," Physical Review Letters, vol. 44, no. 7, p. 475, 1980.
[26] K. Chen et al., "Solution‐Processed CsPbBr3 Quantum Dots/Organic Semiconductor Planar Heterojunctions for High‐Performance Photodetectors," Advanced Science, vol. 9, no. 12, p. 2105856, 2022.
[27] C. Chen et al., "Polyacrylonitrile‐Coordinated Perovskite Solar Cell with Open‐Circuit Voltage Exceeding 1.23 V," Angewandte Chemie, vol. 134, no. 8, p. e202113932, 2022.
[28] L. Protesescu et al., "Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut," Nano letters, vol. 15, no. 6, pp. 3692-3696, 2015.
[29] K. J. Vahala, "Optical microcavities," nature, vol. 424, no. 6950, pp. 839-846, 2003.
[30] W. K. Panofsky and M. Phillips, Classical electricity and magnetism. Courier Corporation, 2005.
[31] C.-H. Chien, S.-H. Wu, T. H.-B. Ngo, and Y.-C. Chang, "Interplay of Purcell effect, stimulated emission, and leaky modes in the photoluminescence spectra of microsphere cavities," Physical Review Applied, vol. 11, no. 5, p. 051001, 2019.
[32] S. Schiller, "Asymptotic expansion of morphological resonance frequencies in Mie scattering," Applied optics, vol. 32, no. 12, pp. 2181-2185, 1993.
[33] S. Schiller and R. L. Byer, "High-resolution spectroscopy of whispering gallery modes in large dielectric spheres," Optics Letters, vol. 16, no. 15, pp. 1138-1140, 1991.
[34] D. K. Cheng, Field and wave electromagnetics. Pearson Education India, 1989.
[35] D. M. Sullivan, Electromagnetic simulation using the FDTD method. John Wiley & Sons, 2013.
[36] J. Leng, T. Wang, Z.-K. Tan, Y.-J. Lee, C.-C. Chang, and K. Tamada, "Tuning the emission wavelength of lead halide perovskite NCs via size and shape control," ACS omega, vol. 7, no. 1, pp. 565-577, 2021.
[37] W. Bragg and J. Thomson, "Mr Bragg, Diffraction of Short Electromagnetic Waves, etc. 43," in Proceedings of the Cambridge Philosophical Society: Mathematical and physical sciences, 1914, vol. 17: Cambridge Philosophical Society, p. 43.
[38] Y. Kawakami et al., "Radiative and Nonradiative Recombination Processes in GaN‐Based Semiconductors," physica status solidi (a), vol. 183, no. 1, pp. 41-50, 2001.
[39] U. Holzwarth and N. Gibson, "The Scherrer equation versus the'Debye-Scherrer equation'," Nature nanotechnology, vol. 6, no. 9, pp. 534-534, 2011.
[40] F. Ruf et al., "Temperature-dependent studies of exciton binding energy and phase-transition suppression in (Cs, FA, MA) Pb (I, Br) 3 perovskites," Apl Materials, vol. 7, no. 3, 2019.
[41] T. Schmidt, K. Lischka, and W. Zulehner, "Excitation-power dependence of the near-band-edge photoluminescence of semiconductors," Physical Review B, vol. 45, no. 16, p. 8989, 1992.
[42] Q. Wang et al., "Improved thermal stability of photoluminescence in Cs4PbBr6 microcrystals/CsPbBr3 nanocrystals," Journal of colloid and interface science, vol. 554, pp. 133-141, 2019.
[43] K. E. Shulenberger et al., "Setting an upper bound to the biexciton binding energy in CsPbBr3 perovskite nanocrystals," The Journal of Physical Chemistry Letters, vol. 10, no. 18, pp. 5680-5686, 2019.
[44] H. Yang, Y. Zhang, J. Pan, J. Yin, O. M. Bakr, and O. F. Mohammed, "Room-temperature engineering of all-inorganic perovskite nanocrsytals with different dimensionalities," Chemistry of Materials, vol. 29, no. 21, pp. 8978-8982, 2017.
[45] J. Cao et al., "Cryogenic‐Temperature Thermodynamically Suppressed and Strongly Confined CsPbBr3 Quantum Dots for Deeply Blue Light‐Emitting Diodes," Advanced Optical Materials, vol. 9, no. 17, p. 2100300, 2021.
[46] Z. Liu et al., "Stable and enhanced frequency up-converted lasing from CsPbBr 3 quantum dots embedded in silica sphere," Optics Express, vol. 27, no. 7, pp. 9459-9466, 2019.
[47] D. Yan, T. Shi, Z. Zang, S. Zhao, J. Du, and Y. Leng, "Stable and low-threshold whispering-gallery-mode lasing from modified CsPbBr3 perovskite quantum dots@ SiO2 sphere," Chemical Engineering Journal, vol. 401, p. 126066, 2020.
[48] M. B. Price et al., "Whispering-gallery mode lasing in perovskite nanocrystals chemically bound to silicon dioxide microspheres," The Journal of Physical Chemistry Letters, vol. 11, no. 17, pp. 7009-7014, 2020.
[49] M. Xie et al., "Solution-processed whispering-gallery-mode microsphere lasers based on colloidal CsPbBr3 perovskite nanocrystals," Nanotechnology, vol. 33, no. 11, p. 115204, 2021.
[50] H. Yu et al., "Narrow linewidth CsPbBr3 perovskite quantum dots microsphere lasers," Optical Materials, vol. 133, p. 112907, 2022.
[51] M. Rubin, "Optical properties of soda lime silica glasses," Solar energy materials, vol. 12, no. 4, pp. 275-288, 1985.
校內:2028-07-26公開