簡易檢索 / 詳目顯示

研究生: 沈紫蓮
Shen, Zi-Lian
論文名稱: 以銫鉛溴化物鈣鈦礦量子點包覆之微米球的迴廊共振腔雷射特性
Whispering-gallery-mode lasing characteristics of microspheres coated with CsPbBr3 perovskite quantum dots
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 86
中文關鍵詞: 無機銫鉛鹵化物鈣鈦量子點迴廊共振腔米氏散射牛頓迭代法
外文關鍵詞: All-inorganic cesium lead halide perovskite quantum dots, Whispering gallery mode, Mie scattering, Newton's iterative method
相關次數: 點閱:144下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I ABSTRACT II 致謝 IV 目錄 V List of Figures VIII List of Tables VI Chapter1. Introduction 1 1.1 Preface 1 1.2 Historical review 2 1.2.1 Perovskites 2 1.2.2 Perovskite quantum dots 6 1.2.3 Whispering Gallery Mode 8 1.3 Motivation 12 Chapter2. Background Theories 13 2.1 Characteristics of CsPbBr3 Perovskite quantum dots 13 2.1.1 The structure of CsPbBr3 Perovskite quantum dots 13 2.1.2 Optical Properties of CsPbBr3 Perovskite quantum dots 14 2.2 Optical Properties 15 2.2.1 Interaction of Light and Matter 15 2.3 Microcavity 19 2.3.1 Asymptotic Expansion of Spherical Whispering Gallery Mode in Mie scattering 20 2.3.2 Newton's iterative method 26 2.4 Lumerical FDTD Simulation 28 Chapter3. Experimental Process and Measurement 30 3.1 Laboratory apparatus 30 3.1.1 Heating Mantle 30 3.1.2 Hot plate 30 3.1.3 Centrifuge 31 3.1.4 Spin Coater 31 3.2 Synthesis of CsPbBr3 Perovskite Quantum Dots 33 3.2.1 Hot-Injection Synthesis[36] 33 3.2.2 Preparation of SiO2 microsphere coated with CsPbBr3 PQDs-PAN sample 37 3.3 Sample analysis 38 3.3.1 Scanning Electron Microscope (SEM) 38 3.3.2 Transmission Electron Microscope (TEM) 39 3.3.3 X-Ray Diffraction (XRD) 40 3.3.4 Focused ion beam (FIB) 42 3.4 Optical Measurement 43 3.4.1 Micro-Photoluminescence (Micro-PL) 43 3.4.2 Temperature-Controlling system 45 3.4.3 Time-resolved Photoluminescence (TRPL) system 46 3.4.4 Reflection spectroscopy 49 3.4.5 Ultraviolet-visible spectroscopy 50 3.4.6 PL mapping system 51 Chapter4. Experimental Results and Discussion 52 4.1 Morphology and material structure of CsPbBr3 PQDs 52 4.1.1 Images of SEM and TEM 52 4.1.2 XRD Analysis 53 4.2 Optical measurement 54 4.2.1 Optical absorption 54 4.2.2 Excitation Power-dependent PL spectra 56 4.2.3 Temperature-dependent PL 58 4.2.4 Time-Resolved PL Analysis 60 4.3 Spherical Whispering Gallery Mode 61 4.3.1 Top-view morphology of SiO2 microsphere coated with CsPbBr3 PQDs and SiO2 microsphere coated with CsPbBr3 PQDs-PAN 61 4.3.2 The cross-section morphology of SiO2 microsphere coated with CsPbBr3 PQDs-PAN 62 4.3.3 PL mapping 63 4.3.4 Optical Reflectance and PL Measurements 64 4.3.5 Whispering Gallery Mode Lasing 66 4.3.6 Lumerical FDTD Simulation results 71 4.3.7 Whispering-gallery-mode analysis of microspheres by MATLAB simulation 72 Chapter5. Conclusion and Future Work 80 Reference 81

    [1] C. Zheng, C. Bi, F. Huang, D. Binks, and J. Tian, "Stable and strong emission CsPbBr3 quantum dots by surface engineering for high-performance optoelectronic films," ACS applied materials & interfaces, vol. 11, no. 28, pp. 25410-25416, 2019.
    [2] H.-R. Kim et al., "Cesium lead bromide (CsPbBr3) perovskite quantum dot-based photosensor for chemiluminescence immunoassays," ACS Applied Materials & Interfaces, vol. 13, no. 25, pp. 29392-29405, 2021.
    [3] S. Zhou, R. Tang, and L. Yin, "Slow‐photon‐effect‐induced photoelectrical‐conversion efficiency enhancement for carbon‐quantum‐dot‐sensitized inorganic CsPbBr3 inverse opal perovskite solar cells," Advanced Materials, vol. 29, no. 43, p. 1703682, 2017.
    [4] A. Shinde, R. Gahlaut, and S. Mahamuni, "Low-temperature photoluminescence studies of CsPbBr3 quantum dots," The Journal of Physical Chemistry C, vol. 121, no. 27, pp. 14872-14878, 2017.
    [5] K. Shen et al., "Flexible and self‐powered photodetector arrays based on all‐inorganic CsPbBr3 quantum dots," Advanced Materials, vol. 32, no. 22, p. 2000004, 2020.
    [6] X. Du et al., "High-quality CsPbBr 3 perovskite nanocrystals for quantum dot light-emitting diodes," RSC advances, vol. 7, no. 17, pp. 10391-10396, 2017.
    [7] S. Yakunin et al., "Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites," Nature communications, vol. 6, no. 1, p. 8056, 2015.
    [8] G.-B. Huang et al., "Colorimetric Determination of Chloridion in Domestic Water Based on the Wavelength Shift of CsPbBr 3 Perovskite Nanocrystals via Halide Exchange," Journal of Analysis and Testing, vol. 5, pp. 3-10, 2021.
    [9] Q. Chen et al., "Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications," Nano Today, vol. 10, no. 3, pp. 355-396, 2015.
    [10] M. García-Hernández, G. Chadeyron, D. Boyer, A. García-Murillo, F. Carrillo-Romo, and R. Mahiou, "Hydrothermal synthesis and characterization of Europium-doped barium titanate nanocrystallites," Nano-Micro Letters, vol. 5, pp. 57-65, 2013.
    [11] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the american chemical society, vol. 131, no. 17, pp. 6050-6051, 2009.
    [12] Y. Zhou et al., "A brief review on metal halide perovskite photocatalysts: History, applications and prospects," Journal of Alloys and Compounds, p. 165062, 2022.
    [13] NREL. "Best PCE of research-cell chart." https://www.nrel.gov/pv/cell-efficiency.html (accessed.
    [14] B. Ehrler, E. Alarcón-Lladó, S. W. Tabernig, T. Veeken, E. C. Garnett, and A. Polman, "Photovoltaics reaching for the Shockley–Queisser limit," ed: ACS Publications, 2020.
    [15] Z.-K. Tan et al., "Bright light-emitting diodes based on organometal halide perovskite," Nature nanotechnology, vol. 9, no. 9, pp. 687-692, 2014.
    [16] G. Xing et al., "Low-temperature solution-processed wavelength-tunable perovskites for lasing," Nature materials, vol. 13, no. 5, pp. 476-480, 2014.
    [17] A. I. Ekimov and A. A. Onushchenko, "Quantum size effect in three-dimensional microscopic semiconductor crystals," ZhETF Pisma Redaktsiiu, vol. 34, p. 363, 1981.
    [18] V. Soloviev, A. Eichhöfer, D. Fenske, and U. Banin, "Molecular limit of a bulk semiconductor: Size dependence of the “band gap” in CdSe cluster molecules," Journal of the American Chemical Society, vol. 122, no. 11, pp. 2673-2674, 2000.
    [19] N. Kirstaedter et al., "Low threshold, large To injection laser emission from (InGa) As quantum dots," Electronics Letters, vol. 30, no. 17, pp. 1416-1417, 1994.
    [20] C. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites," Journal of the American Chemical Society, vol. 115, no. 19, pp. 8706-8715, 1993.
    [21] J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, "Quantum dot light‐emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)," Advanced materials, vol. 27, no. 44, pp. 7162-7167, 2015.
    [22] G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Annalen der physik, vol. 330, no. 3, pp. 377-445, 1908.
    [23] C. Garrett, W. Kaiser, and W. Bond, "Stimulated emission into optical whispering modes of spheres," Physical Review, vol. 124, no. 6, p. 1807, 1961.
    [24] A. Ashkin and J. Dziedzic, "Observation of resonances in the radiation pressure on dielectric spheres," Physical Review Letters, vol. 38, no. 23, p. 1351, 1977.
    [25] R. Benner, P. Barber, J. Owen, and R. Chang, "Observation of structure resonances in the fluorescence spectra from microspheres," Physical Review Letters, vol. 44, no. 7, p. 475, 1980.
    [26] K. Chen et al., "Solution‐Processed CsPbBr3 Quantum Dots/Organic Semiconductor Planar Heterojunctions for High‐Performance Photodetectors," Advanced Science, vol. 9, no. 12, p. 2105856, 2022.
    [27] C. Chen et al., "Polyacrylonitrile‐Coordinated Perovskite Solar Cell with Open‐Circuit Voltage Exceeding 1.23 V," Angewandte Chemie, vol. 134, no. 8, p. e202113932, 2022.
    [28] L. Protesescu et al., "Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut," Nano letters, vol. 15, no. 6, pp. 3692-3696, 2015.
    [29] K. J. Vahala, "Optical microcavities," nature, vol. 424, no. 6950, pp. 839-846, 2003.
    [30] W. K. Panofsky and M. Phillips, Classical electricity and magnetism. Courier Corporation, 2005.
    [31] C.-H. Chien, S.-H. Wu, T. H.-B. Ngo, and Y.-C. Chang, "Interplay of Purcell effect, stimulated emission, and leaky modes in the photoluminescence spectra of microsphere cavities," Physical Review Applied, vol. 11, no. 5, p. 051001, 2019.
    [32] S. Schiller, "Asymptotic expansion of morphological resonance frequencies in Mie scattering," Applied optics, vol. 32, no. 12, pp. 2181-2185, 1993.
    [33] S. Schiller and R. L. Byer, "High-resolution spectroscopy of whispering gallery modes in large dielectric spheres," Optics Letters, vol. 16, no. 15, pp. 1138-1140, 1991.
    [34] D. K. Cheng, Field and wave electromagnetics. Pearson Education India, 1989.
    [35] D. M. Sullivan, Electromagnetic simulation using the FDTD method. John Wiley & Sons, 2013.
    [36] J. Leng, T. Wang, Z.-K. Tan, Y.-J. Lee, C.-C. Chang, and K. Tamada, "Tuning the emission wavelength of lead halide perovskite NCs via size and shape control," ACS omega, vol. 7, no. 1, pp. 565-577, 2021.
    [37] W. Bragg and J. Thomson, "Mr Bragg, Diffraction of Short Electromagnetic Waves, etc. 43," in Proceedings of the Cambridge Philosophical Society: Mathematical and physical sciences, 1914, vol. 17: Cambridge Philosophical Society, p. 43.
    [38] Y. Kawakami et al., "Radiative and Nonradiative Recombination Processes in GaN‐Based Semiconductors," physica status solidi (a), vol. 183, no. 1, pp. 41-50, 2001.
    [39] U. Holzwarth and N. Gibson, "The Scherrer equation versus the'Debye-Scherrer equation'," Nature nanotechnology, vol. 6, no. 9, pp. 534-534, 2011.
    [40] F. Ruf et al., "Temperature-dependent studies of exciton binding energy and phase-transition suppression in (Cs, FA, MA) Pb (I, Br) 3 perovskites," Apl Materials, vol. 7, no. 3, 2019.
    [41] T. Schmidt, K. Lischka, and W. Zulehner, "Excitation-power dependence of the near-band-edge photoluminescence of semiconductors," Physical Review B, vol. 45, no. 16, p. 8989, 1992.
    [42] Q. Wang et al., "Improved thermal stability of photoluminescence in Cs4PbBr6 microcrystals/CsPbBr3 nanocrystals," Journal of colloid and interface science, vol. 554, pp. 133-141, 2019.
    [43] K. E. Shulenberger et al., "Setting an upper bound to the biexciton binding energy in CsPbBr3 perovskite nanocrystals," The Journal of Physical Chemistry Letters, vol. 10, no. 18, pp. 5680-5686, 2019.
    [44] H. Yang, Y. Zhang, J. Pan, J. Yin, O. M. Bakr, and O. F. Mohammed, "Room-temperature engineering of all-inorganic perovskite nanocrsytals with different dimensionalities," Chemistry of Materials, vol. 29, no. 21, pp. 8978-8982, 2017.
    [45] J. Cao et al., "Cryogenic‐Temperature Thermodynamically Suppressed and Strongly Confined CsPbBr3 Quantum Dots for Deeply Blue Light‐Emitting Diodes," Advanced Optical Materials, vol. 9, no. 17, p. 2100300, 2021.
    [46] Z. Liu et al., "Stable and enhanced frequency up-converted lasing from CsPbBr 3 quantum dots embedded in silica sphere," Optics Express, vol. 27, no. 7, pp. 9459-9466, 2019.
    [47] D. Yan, T. Shi, Z. Zang, S. Zhao, J. Du, and Y. Leng, "Stable and low-threshold whispering-gallery-mode lasing from modified CsPbBr3 perovskite quantum dots@ SiO2 sphere," Chemical Engineering Journal, vol. 401, p. 126066, 2020.
    [48] M. B. Price et al., "Whispering-gallery mode lasing in perovskite nanocrystals chemically bound to silicon dioxide microspheres," The Journal of Physical Chemistry Letters, vol. 11, no. 17, pp. 7009-7014, 2020.
    [49] M. Xie et al., "Solution-processed whispering-gallery-mode microsphere lasers based on colloidal CsPbBr3 perovskite nanocrystals," Nanotechnology, vol. 33, no. 11, p. 115204, 2021.
    [50] H. Yu et al., "Narrow linewidth CsPbBr3 perovskite quantum dots microsphere lasers," Optical Materials, vol. 133, p. 112907, 2022.
    [51] M. Rubin, "Optical properties of soda lime silica glasses," Solar energy materials, vol. 12, no. 4, pp. 275-288, 1985.

    無法下載圖示 校內:2028-07-26公開
    校外:2028-07-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE