簡易檢索 / 詳目顯示

研究生: 黃緯苓
Huang, Wei-Ling
論文名稱: 電噴霧法製備硫化鎘薄膜及光電性質之研究
指導教授: 陳進成
chen, Chi-cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 115
中文關鍵詞: 硫化鎘奈米微粒微波加熱硫化鎘薄膜電噴霧法
外文關鍵詞: CdS thin film, CdS nanoparticle, microwave heating, electrospray
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   目前一般使用的照明設備在能源損耗、環境汙染等問題上尚有極大的改善空間,因此開發具有體積小、壽命長、無水銀汙染、耗能少、發光效率高…等優點之半導體發光二極體,在節能與環保有其需要。
      本研究利用化學溶膠法配合新興的微波加熱以控制成核成長速率來製備奈米微粒。加入適當界面活性劑以避免微粒聚集並以微波爐快速達到高溫及迅速冰浴,使反應能達到高成核與低成長的條件。利用電噴霧法噴出含有硫化鎘奈米微粒的帶電小液滴,經高溫爐揮發形成奈米微粒於同時設計電場收集器,根據微粒遷移率的不同,以期能在特定電壓下收集特定粒徑。在微粒分析上,利用XRD、SMPS系統及TEM來決定粒徑大小及晶相;在薄膜部份,利用SEM觀察薄膜表面型態;在光譜部份,利用UV-Vis及PL量測吸收及發光波長。
      實驗結果顯示可製備粒徑在10 nm以下的硫化鎘奈米微粒,証實本實驗方法為安全又便利具有可行性。同時電場收集器可以得到均勻的薄膜,但因微粒在收集時之聚集,在光譜分析方面並未出現使波長偏移之量子效應。但此種製膜方式簡單、快速、便宜,可在常壓下操作,在未來發展上應具有極大的潛力。

      Light-emitting diodes (LEDs) have the advantages of small volume, long lifetime, no mercury pollution, low energy loss, and high emission efficiency, etc. A successful development not only serve to improve the disadvantages of the traditional illuminants but also achieve the energy saving and environment protection.
      In the present study, CdS nanoparticles are synthesized by sol-gel method assisted with microwave heating. The microwave assisted heating is a novel synthesis method and has been used to control particles size and size distribution. In addition, a surfactant was added in the precursor solution to avoid aggregation. The influences of microwave heating time, reactant concentration and surfactant concentration on the size of CdS nanoparticles were investigated. Then, the CdS thin film was prepared by electrospraing CdS particles contained solution with the assistance of an electrostatic collector. Particles were collected at a specific diameter for specific voltage according to their mobility. The size of nanoparticles was analyzed by SMPS (Scanning Mobility Particle Sizer), XRD, and TEM. The thin film morphology was analyzed by SEM and AFM and the optic properties were measured by UV-Vis and PL.
      The experimental results show that CdS particles of less than 10nm were successfully synthesis, and uniform CdS thin films can be prepared. However, no shifting in the emission wavelength spectrum was observed. The method developed in the study has a great potential become it is simple, fast, cheap, and safe, and can be operated in atmospheric pressure.

    中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅱ 總目錄…………………………………………………………………Ⅲ 圖目錄…………………………………………………………………Ⅶ 表目錄…………………………………………………………………Ⅹ 符號說明……………………………………………………………XI 第一章 緒論 1-1 發光二極體的發展…………………………………………1 1-2 文獻回顧……………………………………………………5 1-2-1 半導體發光材料……………………………………………5 1-2-2 硫化鎘奈米微粒之研究…………………………………10 1-3 硫化鎘薄膜之製備………………………………………13 1-4 本文研究目標……………………………………………18 第二章 理論 2-1 半導體物理基礎…………………………………………19 2-1-1 半導體之特性……………………………………………19 2-1-2 量子點的特性……………………………………………23 2-1-3 半導體量子侷限效應……………………………………27 2-2 電噴霧法…………………………………………………31 2-2-1 電噴霧原理………………………………………………31 2-2-2 參數對電噴霧的影響……………………………………36 2-3 電移率與電場收集器……………………………………41 第三章 實驗 3-1 實驗流程…………………………………………………43 3-2 實驗步驟…………………………………………………46 3-2-1 硫化鎘奈米微粒之製備…………………………………46 3-2-2 基板之準備………………………………………………47 3-3 薄膜之製備………………………………………………49 3-3-1 電噴霧系統………………………………………………49 3-3-2 電場收集器………………………………………………52 3-4 微粒粒徑分析……………………………………………54 3-4-1 掃描式粒徑分析儀………………………………………54 3-4-2 X光繞射分析儀…………………………………………59 3-4-3 穿透式電子顯微鏡………………………………………60 3-5 薄膜表面分析……………………………………………61 3-5-1 掃描式電子顯微鏡………………………………………61 3-5-2 原子力顯微鏡……………………………………………62 3-6 光譜分析…………………………………………………63 3-6-1 紫外光—可見光吸收光譜………………………………63 3-6-2 螢光光譜儀………………………………………………63 第四章 結果與討論 4-1 微粒之組成與晶相………………………………………65 4-1-1 微粒組成分析……………………………………………65 4-1-2 微粒晶相分析……………………………………………68 4-2 微粒之粒徑………………………………………………72 4-2-1 XRD計算粒徑大小………………………………………72 4-2-2 SMPS計算粒徑大小………………………………………72 4-2-3 TEM計算粒徑大小………………………………………72 4-3 薄膜之組成與晶相………………………………………83 4-3-1 薄膜組成之分析…………………………………………83 4-3-2 薄膜晶相之分析…………………………………………85 4-4 收集微粒之影響因素……………………………………87 4-4-1 不同電壓下對收集微粒之影響…………………………87 4-4-2 Corona discharge的影響………………………………89 4-4-3 電場收集器管徑之影響…………………………………91 4-4-4 不同氣體流量之影響……………………………………93 4-5 收集不同微粒之硫化鎘薄膜……………………………95 4-5-1 薄膜表面型態觀察………………………………………97 4-5-2 薄膜及粗糙度之分析……………………………………99 4-6 光譜分析…………………………………………………102 4-6-1 UV-Visible光譜分析……………………………………102 4-6-2 PL光譜分析………………………………………………102 第五章 結論……………………………………………………106 第六章 未來實驗方向…………………………………………108 參考文獻 ……………………………………………………………110

    [1] M. George Craford, MRS bulletin, 25(10), 27(2002)
    [2] N. Holonyak Jr. and S. F. Bevaqua, Appl. Phys. Lett. 1(4), 82(1962)
    [3] M. George Craford, Circuits and Devices-IEEE 8(5), 24 (1992)
    [4] Neil Savage, Technology Review 103(5), 38(2000)
    [5] 陳澤澎,“發光二極體的發展及新應用”,工業材料123, 74(1997)
    [6] N. Holonyak, Jr., S. F. Bevacque, C. V. Bielan, and J. Lubowski, Appl. Phys. Lett. 3(3), 1(1963)
    [7] D. G. Thomas, J. J. Hopfield, and C. J. Frosch, Phys. Rev. Lett. 15(22), 857(1965)
    [8] M. J. Chou, D. C. Tsui, and G. Weimann, Appl. Phys. Lett. 47(6), 609(1985)
    [9] M. A. Haase, J. Qiu, J. M. Depuyde, and H. Cheng, Appl. Phys. Lett. 59(11), 1272(1991)
    [10] S. Nakamura, Kitamura, H. Umeya, A. Jia, M. Kobayashi, A. Yoshikawa, M. Shimotomai, Y. Kato, and K. Takahashi, Electronics Lett. 34(25), 2435(1998)
    [11] A. Ishibashi, J. Crys. grow. 159, 555(1996)
    [12] J. E. Macintyre(executive editor), F. M. Daniel, V. M. Stirling(assistant editors), “Dictionary of Inorganic Compounds-Chemical Database”,1st Editions, Published by Charpman and Hall(1992)
    [13] A. N. Goldstein, C. M. Echer, A. P. Alivisatos, Science, 256, 1425(1992)
    [14] “Physics of Semiconducting Nanostructures” Editde by K. P. Jain, Narosa Publication, 25(1997)
    [15] J. Nanda, B. A. kuruvilla, K. V. P. Shafi, D. D. Sarma, Phys. Rev. B 59, 7473(1999)
    [16] A. D. Yoffe, Adv. Phys. 42, 173(1993)
    [17] M. E. Wozniak, and A. Sen, Chem. Mater. 4, 753(1992)
    [18] Y. Wang and N. Herron, J. Phys. Chem. 91, 257(1987)
    [19] C. Petit, P. Lixon, and M. P. Pileni, J. Phys. Chem. 94, 1598(1990)
    [20] N. Herron, Y. Wang, H. Eckert, J. Am. Chem. Soc. 112, 1322(1990)
    [21] T. Vossmeyer, L. Katsikas, M. Giersig, I. G. Popovic, K. Diesner, A. Chemseddine, A. Eychmuller, and H. Weller, J. Phys. Chem. 98, 7665(1994)
    [22] M. L. Steigerwald, A. P. Alivisatos, J. M. Gibson, T. D.Harris, R. Kortan, A. J. Muller, A. M. Thayer, T. M. Duncan, D. C. Douglass, L. E. Brus, J. Am. Chem. Soc. 110, 3046-3050(1988)
    [23] R. Rossetti, J. L. Ellison, J. M. Gibson, L. E. Brus, J. Chem. Phys. 80(9), 4464(1984)
    [24] T. Gacoin, K. Lahlil, P. Larregaray, and J-P. Boilot, J. Phys. Chem. B 105, 10228(2001)
    [25] R. Reisfeld, J. Alloys and Compounds 341, 56(2002)
    [26] C. B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc. 115, 8706(1993)
    [27] Mike. Lazell, Paul O’Brien, J. Mater. Chem. 9, 1381(1999)
    [28] S. Komarneni, R. Roy, Q. H. Li, Mater. Res. Bull. 27(12), 1393(1992)
    [29] Christopher. C. Landry, Jason Lockwood, and Andrew R. Barron, Chem. Mater. 7, 699(1995)
    [30] J. Zhu, O. Palchik, S. Chen, and A. Gedanken, J. Phys. Chem. B 104, 7344(2000)
    [31] Y. Wada, H. Kuramoto, J. Anand, T. Kitamura, T. Sakata, H. Mori, and S. Yanagida, J. Mater. Chem. 11, 1936(2000)
    [32] J. J. Zhu, M. G. Zhou, J. Z. Xu, X. H. Liao, Mater. Lett. 47, 25(2000)
    [33] X. H. Liao, J. J. Zhu, H. Y. Chen, Mater. Sci. Eng. B 85, 85(2001)
    [34] H. Uda, H. Yonezawa, Y. Ohtsubo, M. Kosaka, H. Sonomura, Sol. Energy Mater. Sol. Cells 75, 219(2003)
    [35] H. Uda, T. Hujii, S. Lkegami, and H. Sonomura, Proceedings of the 26th IEEE PVSC, 523(1997)
    [36] K. Senthil, D. Mangalaraj, Sa. K. Narayandass, R. Kesavamoorthy, G. L. N. Reddy, Nucl. Instr. and Meth. in Phys. Res. B 173, 475(2001)
    [37] K.El Assali, M. Boustani, A. Khiara, T. Bekkay, A. Outzourhit, E. L. Ameziane, J. C. Bernede, and J. Pouzet, Phys. Stat. Sol. 178, 701(2000)
    [38] H. Ashour, K.El Assali, Phys. Stat. Sol. 184, 175(2001)
    [39] E. Cordoncillo, P. Escribano, G. Monros, M. A. Tena, V. Orera, and J. Carda, J. Solid State Chem. 118, 1(1995)
    [40] S. Gorer, G. Hodes, Y. Sorek, R. Reisfeld, Mater. Lett. 31, 209(1997)
    [41] E. J. Dawnay, M. A. Fardad, Mino Green, and E. M. Yeatman, J. Mater. Res. v12, p.3115(1997)
    [42] S. M. Song, S. Y. Choi, J. Non-Cryst. Solids 291, 50(2001)
    [43] S. Coe, W. K. Woo, M. Bawend, and V. Bulovic, Nature 420, p.800(2002)
    [44] David B. Mitzi, Laura L. Kosbar, Conal E. Murray, Matthew Copel, and Ali Afzali, Nature 428, 299(2004)
    [45] Z. Y. Pan, X. G. Peng, T. J. Li, J. Z. Liu, Appl. Sur. Sci. 108, 439(1997)
    [46] P. Facci, V. Erokhin, A. Tronin, and C. Nicolini, J. Phys. Chem. 98, 13323(1994)
    [47] Yale H. Ma and Richard H. Bube, J. Electrochemical Soc. 124, 1430(1977)
    [48] C. H. Chen, M. H. J. Emond, E. M. Kelder, B. Meester, and J. Schoonman, J. Aerosol Sci. 30, 959(1999)
    [49] S. Leeuwenburgh, J. Wolke, J. Schoonman, and J. Jansen, J. Biomedical Mater. Res. A 66, 330(2003)
    [50] A. A. van Zomeren, E. M. Kelder, J. C. M. Marijnissen, and J. Schoonman, J. Aerosol Sci. 25, 1229(1994)
    [51] M. Danek, K. F. Jensen, C. B. Murry, and M. G. Bawendi, J. Crys. Grow. 145, 714(1994)
    [52] B. Su and K. L. Choy, Thin Solid Films 361, 102(2000)
    [53] Richard A. Pearman,陳世昌 譯,“固態工業電子學”,東華書局(1986)
    [54] Ben G. Streetman and Sanjay Banerjee, “Solid state electronic devices”, 5th Editionm, NJ:Prenticce Hall(2000)
    [55] Nae-Man Park, Tae-Soo Kim, and Seong-Ju Park, Appl. Phys. Lett. 78(17), 23(2001)
    [56] M. V. Artemyev,S. V. Gaponenko, I. N. Germanenko,A. M. Kapitonov, Chem. Phys Lett. 243, 450(1995)
    [57] John H. Davies, “The physics of low-dimensional semiconductors”, Published by the Press Syndicate of the University of Cambridge, p.1-3, 13, 46, 107 (1998)
    [58] R. Rossetti, R. Hull, J. M. Gabson, and L. E. Brus, J. Chem. Phys. 83, 1406(1985)
    [59] L. E. Brus, J. Chem. Phys. 79, 5566(1983)
    [60] L. E. Brus, J. Chem. Phys. 80, 4403(1984)
    [61] L. Brus, J. Quantum Electronics 22, 1909(1986)
    [62] M. Cloupeau and B. Prunet-Foch(1998), J. Electrostatics, 22, 135(1989)
    [63] J. Rosell-Llumpart and J. Fernandez De La Mora(1994), J. Aerosol Sci., 25(6), 1093(1994)
    [64] M. Cloupeau and B. Prunet-Foch, J. Aerosol Sci., 25(6), 1021(1994)
    [65] W. Franklins Myth, Trends in analytical chemistry 18(5), 335(1999)
    [66] Th. Dulcks and R. Juraschek, J. Aerosol Sci. 30(7), 927(1999)
    [67] L. De Juan and J. Fernandez de La Mora, J. Colloid and Interface Science 186, 280(1997)
    [68] S. L. Kaufman, Special Issue on Ion Formation Mechanisms in Electrospray, Ed. S. Rutan and J. Fenn(1999)
    [69] M. Cloupeau and B. Prunet-Foch, J. Electrostatics, 22, 135(1989)
    [70] R. P. A. Hartman, D. J. Brunner, D.M.A. Camelot, J. C. M. Marjnissen, and B. Scarlett, J. Aerosol Sci., 31(1), 65(2000)
    [71] Vonnegut B. and Neubauer R. L., J. Colloid Sci. 7,616(1952)
    [72] T. K.Burayev and I. P. Vereshchagin, Fluid Mech., Sov. Res. 1, 56(1972)
    [73] C. H. Chen, M. H. J. Emond, E. M. Kelder, B. Meester, and J. Schoonman, J. Aerosol Sci. 30(7), 959(1999)
    [74] Model 3080 Electrostatic Classifier Manual, TSI company
    [75] D. R. Chen, D. Y. Pui, D. Hummes, H. Fissan, F. R. Quant and G. J. Sem, J. Aerosol Sci. 29(5/6), 497(1998)
    [76] L. Spanhel, M. Haase, H. Weller, and A. Henglein, J. Am. Chem. Soc. 109, 5649(1987)
    [77] B. D. Cullity, “Elements of X-Ray Diffraction” 2th Edition, Published by Addison-Wesley(1978)
    [78] Tauc J., “In Optical Properties of Solids”, Edited by F. Abeles. (North Holland) (1969)
    [79] Douglas A. Skoog and James J. Leary, “Principles of instrumental analysis”, 4th Edition, Published by Saunders College(1992)
    [80] Edmund S. Rittner, James H. Schulman, J. Phys. Chem. 47, 537(1943)
    [81] W. O. Milligan, J. Phys. Chem. 38, 797(1934)
    [82] 汪建民,“材料分析”,中國材料科學學會,台灣(1998)
    [83] 陳力俊,“材料分電子顯微鏡學”修訂版,行政院國家科學委員會精密儀器發展中心
    [84] P. Villars and L. D. Calvert, “Pearson’s Handbook of Crystallographic Data for Intermetallic Phases”, Published by Materials Information Society(1991)

    下載圖示 校內:2005-08-17公開
    校外:2005-08-17公開
    QR CODE