簡易檢索 / 詳目顯示

研究生: 葉朝貴
Yeh, Chao-kuei
論文名稱: 第一原理輔助熱力學計算探討電流作用下錫鉛與鉍鎳合金之相穩定性
Phase stabilities of Pb-Sn and Bi-Ni alloys under current stressing: An ab initio-aided CALPHAD study
指導教授: 林士剛
Lin, Shih-kang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 84
中文關鍵詞: 第一原理計算CALPHAD熱力學計算界面反應相平衡
外文關鍵詞: Ab initio, CALPHAD, interfacial reaction, phase equilibria
相關次數: 點閱:70下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今電子產品以不斷追求輕、薄、短、小、高功能為目標,隨著三維度積體電路封裝與覆晶技術的發展, 電子元件與接點尺寸不斷地縮小,通過電子接點的電流密度相對地增加,使得電流效應對銲料的影響更加顯著。在本研究中我們選擇了錫鉛與鉍鎳兩種合金銲料系統,去探討文獻中發現的錫鉛合金在電流作用下的錫相於富鉛相過飽和現象與鉍鎳系統三明治反應偶界面反應的非極性效應(non-polarity effect)。本研究以理論計算的方法使用第一原理量子力學計算輔助CALPHAD熱力學模擬,探討電流作用下錫鉛與鉍鎳兩種二元系統的相平衡變行為。在錫鉛系統中,本研究發現電流密度須大於臨界值約3x104 A/cm2,相平衡才會有明顯的改變,而此改變使得在電流作用下的錫相在富鉛相之平衡溶解度增加及鉛相在富錫相之平衡溶解度減少,此模擬結果吻合並解釋了文獻中發現的錫相於富鉛相過飽和現象。在鉍鎳系統中,文獻中觀察到鎳鉍界面反應的生成相為NiBi3,在電流效應下鉍鎳系統的相平衡改變,造成主要擴散物質鉍元素在此界面反應中的化學勢能差在NiBi3相中變大,也就是說鉍元素擴散的驅動力增加了,而此驅動力增加造成NiBi3相生成的速率增加,這個與電流方向無關的改變或許就是造成文獻中所提出的鉍鎳系統三明治反應偶界面反應實驗中所觀察到的非極性效應現象發生的原因之一。此研究能夠開啟學術界新的研究方法去探討並深入了解更多無鉛銲料系統在電流作用下之界面反應與相平衡之改變。

    The effects of electric currents on metallic materials, such as the Joule heating and electromigration, crucially affect the reliability of electronic products. With the developments of the advanced packaging methods, e.g. the 3D IC and flip-chip packaging, the current densities applied in modern devices are continuously increased. Thus, the impacts of these electric current-induced effects are more and more pronounced and crucial to the reliability of electronic products. In the study, we choose two systems, Pb-Sn binary alloys and Bi-Ni binary couples, synthesize what is the mechanism of the Sn supersaturation in Pb-rich matrix of Pb-Sn binary system and the non-polarity effect of sandwich reaction couples of Bi-Ni binary system under current stressing. the phase stability of Pb-Sn and Bi-Ni alloys under current stressing are theoretically investigated by using the ab initio-aided CALPHAD approach. For Pb-Sn binary system, we found that the phase equilibria of the Pb-Sn alloys would be changed by electric current stressing, when the current density is higher than the critical value around 3 x104 A/cm2. As the result, for a Pb-Sn alloy, which is composed of the Pb-rich FCC and the Sn-rich BCT phases, under current stressing with a sufficient high current density, the solubility of Sn in the FCC phase would increase, while that of Pb in the BCT phase would decrease. These would lead to the supersaturation of Sn in the FCC phase and precipitation of the FCC phase from the BCT phase under current stressing. For Bi-Ni binary system, we found that the phase stabilities of the Bi-Ni phases would be changed by electric currents. As the only intermetallic compound formed at the Ni/Bi couples is the NiBi3 phase, the meta-stabilities between Ni, NiBi3, and Bi phases were calculated. The chemical potential gradient of the dominant diffusion specie, Bi, in the NiBi3 reaction layer, i.e. the driving force for the NiBi3 layer growth, was increased under current stressing. Therefore, the “non-polarity effect” is likely caused by the larger chemical potential gradients under current stressing, which is independent of the direction of electron flows. We hope that this study opens a door to the fundamental understanding on the electric current effect upon interfacial reactions and the phase stability change, which may lead to further researches on Pb-free solder joints with electric currents applied.

    ABSTRACT I 摘要 III 致謝 IV TABLE OF CONTENTS V LIST OF FIGURES VII LIST OF TABLES XI CHAPTER I: INTRODUCTION 1 I.1 ELECTRONIC PACKAGING 1 I.2 EFFECTS OF ELECTRIC CURRENT 3 I.2-1 Thermoelectricity 3 I.2-2 Joule heating 5 I.2-3 Electromigration, stress-migration and Thermomigration 6 I.2-4 Polarity and Non-polarity Effect 10 I.2-5 Supersaturation Phenomenon 11 I.3 Ab intio-aided CALPHAD 12 I.3-1 CALPHAD 12 I.3-2 First-principles Calculation 14 I.4 MOTIVATION AND OBJECTIVES 18 CHAPTER II: PHASE STABILITY UNDER CURRENT STRESSING: PB-SN BINARY ALLOYS SYSTEM 19 II.1. LITERATURE REVIEW 19 II.1-1 Supersaturation phenomenon of Pb-Sn alloys induced by current stressing 19 II.1-2 Thermodynamic models of Pb-Sn binary system 22 II.2 CALCULATION METHODS 26 II.3 RESULTS AND DISCUSSION 28 II.3-1 Ab initio-aided CALPHAD thermodynamic modeling Pb-Sn binary system 28 II.3-2 Pb-Sn binary system thermodynamics model under current stressing 35 II.4 SUMMARY 45 CHAPTER III NON-POLARITY EFFECT UNDER CURRENT STRESSING: BI-NI BINARY COUPLES 46 III.1 LITERATURE REVIEW 46 III.1-1 Interfacial reaction 46 III.1-2 Polarity effects and non-polarity effects upon interfacial reactions 49 III.1-1-3 Non-polarity effects upon interfacial reactions 51 III.1-3 Non-polarity effects upon interfacial reactions of Bi-Ni alloys 56 III.2 CALCULATION METHODS 62 III.3 RESULTS AND DISCUSSION 63 III.3-1 Bi-Ni binary system phase stability under current stressing system 63 III.4 SUMMARY 72 Reference 73 APPENDIX A The input files used in PANDAT i APPENDIX B The input files used in VASP xiv APPENDIX C Ab initio-aided CALPHAD modeling of LaMnO3 perovskite xix

    1. Mack, C. A. (2011), “Fifty Years of Moore's Law,”Ieee Transactions on Semiconductor Manufacturing, 24(2) pp. 202-207.
    2. Tu, K. N. (2011), “Reliability challenges in 3D IC packaging technology,”Microelectronics Reliability, 51(3) pp. 517-523.
    3. Selvanayagam, C. S., J. H. Lau, Z. Xiaowu, S. K. W. Seah, K. Vaidyanathan and T. C. Chai. Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps. in Electronic Components and Technology Conference, 2008. ECTC 2008. 58th. 2008.
    4. Ladani, L. J. (2010), “Numerical analysis of thermo-mechanical reliability of through silicon vias (TSVs) and solder interconnects in 3-dimensional integrated circuits,”Microelectronic Engineering, 87(2) pp. 208-215.
    5. Navas, K., V. S. Rao, L. Samule, H. S. We, V. Lee, Z. X. Wu, R. Yang and E. Liao. Development of 3D silicon module with TSV for system in packaging. in Electronic Components and Technology Conference, 2008. ECTC 2008. 58th. 2008.
    6. C., Hsieh M. and C. K. Yu. Thermo-mechanical simulations for 4-layer stacked IC packages. in Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro-Systems, 2008. EuroSimE 2008. International Conference on. 2008.
    7. Yu, A., J. H. Lau, S. W. Ho, A. Kumar, W. Y. Hnin, D. Q. Yu, M. C. Jong, V. Kripesh, D. Pinjala and Kwong D. L. Study of 15µm Pitch Solder Microbumps for 3D IC Integration. in Electronic Components and Technology Conference, 2009. ECTC 2009. 59th. 2009.
    8. Zhan, C. J., J. Y. Chang, T. C. Chang and T. F. Tsai. Bonding and electromigration of 30µm fine pitch micro-bump interconnection. in Microsystems, Packaging, Assembly and Circuits Technology Conference, 2009. IMPACT 2009. 4th International. 2009.
    9. Huebner, H., S. Penka, B. Barchmann, M. Eigner, W. Gruber, M. Nobis, S. Janka, G. Kristen and M. Schneegans (2006), “Microcontacts with sub-30μm pitch for 3D chip-on-chip integration,”Microelectronic Engineering, 83(11–12) pp. 2155-2162.
    10. Xu, L., P. Dixit, M. Jianmin, J. H. L. Pang, Z. Xi, K. N. Tu and R. Preisser (2007), “Through-wafer electroplated copper interconnect with ultrafine grains and high density of nanotwins,”Applied Physics Letters, 90(3) pp. 033111-033111-3.
    11. Jang, D. M., K. Y. Lee, C. H. Ryu, B. H. Cho, T. S. Oh, J. H. Kim, W. J. Lee and J. Yu (2006), “Fabrication and Evaluation of 3D Packages with Through Hole Via,”MRS Online Proceedings Library, 970 pp. null-null.
    12. Beyne, E., P. De Moor, W. Ruythooren, R. Labie, A. Jourdain, H. Tilmans, D. S. Tezcan, P. Soussan, B. Swinnen and R. Cartuyvels. Through-silicon via and die stacking technologies for microsystems-integration. in Electron Devices Meeting, 2008. IEDM 2008. IEEE International. 2008.
    13. Sakuma, K., P. S. Andry, B. Dang, J. Maria, C. K. Tsang, C. Patel, S. L. Wright, B. Webb, E. Sprogis, S. K. Kang, R. Polastre, R. Horton, and J. U. Knickerbocker. 3D Chip Stacking Technology with Low-Volume Lead-Free Interconnections. in Electronic Components and Technology Conference, 2007. ECTC '07. Proceedings. 57th. 2007.
    14. Bulusu, A. and D. G. Walker (2008), “Review of electronic transport models for thermoelectric materials,”Superlattices and Microstructures, 44(1) pp. 1-36.
    15. Huntington, H. B. and A. R. Grone (1961), “Current-induced marker motion in gold wires,”Journal of Physics and Chemistry of Solids, 20(1–2) pp. 76-87.
    16. Chen, C., H. Y. Hsiao, Y. W. Chang, F. Y. Ouyang and K. N. Tu (2012), “Thermomigration in solder joints,”Materials Science and Engineering: R: Reports, 73(9–10) pp. 85-100.
    17. Chen, S. W., C. M. Chen and W. C. Liu (1998), “Electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions,”Journal of Electronic Materials, 27(11) pp. 1193-1198.
    18. Chen, C. M. and S. W. Chen (2000), “Electromigration effect upon the Zn/Ni and Bi/Ni interfacial reactions,”Journal of Electronic Materials, 29(10) pp. 1222-1228.
    19. Chiu, Y. T., C. H. Liu, K. L. Lin and Y. S. Lai (2011), “Supersaturation induced by current stressing,”Scripta Materialia, 65(7) pp. 615-617.
    20. Anatychuk, L. I. and O. J. Luste. Generalized thermoelectric Thomson relations. in Thermoelectrics, 2003 Twenty-Second International Conference on - ICT. 2003.
    21. thermoelectric p-n type. http://www.energybandgap.com/power-generation/how-do-thermoelectrics-work/attachment/thermoelectric-p-n-type/.
    22. Sorbello, R. S. (1973), “A pseudopotential based theory of the driving forces for electromigration in metals,”Journal of Physics and Chemistry of Solids, 34(6) pp. 937-950.
    23. Bosvieux, C. and J. Friedel (1962), “Sur l'electrolyse des alliages metalliques,”Journal of Physics and Chemistry of Solids, 23(1–2) pp. 123-136.
    24. Fiks, V. B. (1959), Soviet Physics-Solid State, 1 pp. 14-28.
    25. Ho, P. S. and T. Kwok (1989), “ELECTROMIGRATION IN METALS,”Reports on Progress in Physics, 52(3) pp. 301-348.
    26. Lloyd, J., K. N. Tu and J. Jaspal, The Physics and Materials Science of Electromigration and Thermomigration in Solders, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies(2004), CRC Press.
    27. Tu, K. N. (2003), “Recent advances on electromigration in very-large-scale-integration of interconnects,”Journal of Applied Physics, 94(9) pp. 5451-5473.
    28. Huynh, Q. T., C. Y. Liu, C. Chen and K. N. Tu (2001), “Electromigration in eutectic SnPb solder lines,”Journal of Applied Physics, 89(8) pp. 4332-4335.
    29. Nah, J. W., K. W. Paik, J. O. Suh and K. N. Tu (2003), “Mechanism of electromigration-induced failure in the 97Pb-3Sn and 37Pb-63Sn composite solder joints,”Journal of Applied Physics, 94(12) pp. 7560-7566.
    30. Lin, Y. H., C. M. Tsai, Y. C. Hu, Y. L. Lin and C. R. Kao (2005), “Electromigration-induced failure in flip-chip solder joints,”Journal of Electronic Materials, 34(1) pp. 27-33.
    31. Agarwal, R., S. E. Ou and K. N. Tu (2006), “Electromigration and critical product in eutectic SnPb solder lines at 100 degrees C,”Journal of Applied Physics, 100(2).
    32. Liu, C. Y., C. Chen and K. N. Tu (2000), “Electromigration in Sn-Pb solder strips as a function of alloy composition,”Journal of Applied Physics, 88(10) pp. 5703-5709.
    33. Nah, J. W., J. H. Kim, H. M. Lee and K. W. Paik (2004), “Electromigration in flip chip solder bump of 97Pb–3Sn/37Pb–63Sn combination structure,”Acta Materialia, 52(1) pp. 129-136.
    34. Turlo, V. V., A. M. Gusak and K. N. Tu (2012), “Model of phase separation and of morphology evolution in two-phase alloy,”Philosophical Magazine, pp. 1-13.
    35. Ouyang, F. Y., K. Chen, K. N. Tu and Y. S. Lai (2007), “Effect of current crowding on whisker growth at the anode in flip chip solder joints,”Applied Physics Letters, 91(23).
    36. Nah, J. W., J. O. Suh and K. N. Tu (2005), “Effect of current crowding and Joule heating on electromigration-induced failure in flip chip composite solder joints tested at room temperature,”Journal of Applied Physics, 98(1).
    37. Lai, Y. S. and C. L. Kao (2006), “Characteristics of current crowding in flip-chip solder bumps,”Microelectronics Reliability, 46(5-6) pp. 915-922.
    38. Chen, Chih-Ming and Sinn-Wen Chen (2000), “- Electromigration effect upon the Zn/Ni and Bi/Ni interfacial reactions,”- 29(- 10).
    39. Chen, C. M. and S. W. Chen (1999), “Electric current effects on Sn/Ag interfacial reactions,”Journal of Electronic Materials, 28(7) pp. 902-906.
    40. Chen, C. M. and S. W. Chen (2003), “Electromigration effects upon the low-temperature Sn/Ni interfacial reactions,”Journal of Materials Research, 18(6) pp. 1293-1296.
    41. Liu, W. C., S. W. Chen and C. M. Chen (1998), “The Al/Ni interfacial reactions under the influence of electric current,”Journal of Electronic Materials, 27(1) pp. L6-L9.
    42. Chiu, Y. T., K. L. Lin and Y. S. Lai (2012), “Dissolution of Sn in a SnPb solder bump under current stressing,”Journal of Applied Physics, 111(4).
    43. Chen, W. Y., T. C. Chiu, K. L. Lin, A. T. Wu, W. L. Jang, C. L. Dong and H. Y. Lee (2013), “Anisotropic dissolution behavior of the second phase in SnCu solder alloys under current stress,”Scripta Materialia, 68(5) pp. 317-320.
    44. Chiu, Y. T., K. L. Lin, A. T. Wu, W. L. Jang, C. L. Dong and Y. S. Lai (2013), “Electrorecrystallization of Metal Alloy,”Journal of Alloys and Compounds, 549 pp. 190-194.
    45. Spencer, P. J. (2008), “A brief history of CALPHAD,”Calphad, 32(1) pp. 1-8.
    46. Liu, Z. K. (2009), “First-Principles Calculations and CALPHAD Modeling of Thermodynamics,”Journal of Phase Equilibria and Diffusion, 30(5) pp. 517-534.
    47. Kohn, W. and L. J. Sham (1965), “SELF-CONSISTENT EQUATIONS INCLUDING EXCHANGE AND CORRELATION EFFECTS,”Physical Review, 140(4A) pp. 1133-&.
    48. Hohenberg, P. and W. Kohn (1964), “Inhomogeneous Electron Gas,”Physical Review, 136(3B) pp. B864-B871.
    49. Zunger, A., S. H. Wei, L. Ferreira and James Bernard (1990), “Special quasirandom structures,”Physical Review Letters, 65(3) pp. 353-356.
    50. Arroyave, R., D. Shin and Z. K. Liu (2005), “Modification of the thermodynamic model for the Mg–Zr system,”Calphad, 29(3) pp. 230-238.
    51. Zhong, Y., M. Yang and Z. K. Liu (2005), “Contribution of first-principles energetics to Al–Mg thermodynamic modeling,”Calphad, 29(4) pp. 303-311.
    52. Zhou, S. H., Y. Wang, C. Jiang, J. Z. Zhu, L. Q. Chen and Z. K. Liu (2005), “First-principles calculations and thermodynamic modeling of the Ni–Mo system,”Materials Science and Engineering: A, 397(1–2) pp. 288-296.
    53. Shang, S., Z. J. Liu and Z. K. Liu (2007), “Thermodynamic modeling of the Ba–Ni–Ti system,”Journal of Alloys and Compounds, 430(1–2) pp. 188-193.
    54. Lukas, H., S. G. Fries and B Sundman (2007), Computational Thermodynamics: The Calphad Method: Cambridge University Press. 324.
    55. Ngai, T. L. and Y. A. Chang (1981), “A THERMODYNAMIC ANALYSIS OF THE PB-SN SYSTEM AND THE CALCULATION OF THE PB-SN PHASE-DIAGRAM,”Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 5(4) pp. 267-276.
    56. Karakaya, I. and W. Thompson (1988), “The Pb−Sn (Lead-Tin) system,”Journal of Phase Equilibria, 9(2) pp. 144-152.
    57. Fecht, H. J., M. X. Zhang, Y. A. Chang and J. H. Perepezko (1989), “METASTABLE PHASE-EQUILIBRIA IN THE LEAD-TIN ALLOY SYSTEM .2. THERMODYNAMIC MODELING,”Metallurgical Transactions a-Physical Metallurgy and Materials Science, 20(5) pp. 795-803.
    58. Ohtani, H., K. Okuda and K. Ishida (1995), “Thermodynamic study of phase equilibria in the Pb-Sn-Sb system,”Journal of Phase Equilibria, 16(5) pp. 416-429.
    59. Dinsdale, A. T. (1991), “SGTE DATA FOR PURE ELEMENTS,”Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 15(4) pp. 317-425.
    60. Kresse, G. and J. Furthmuller (1996), “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,”Computational Materials Science, 6(1) pp. 15-50.
    61. Kresse, G. and D. Joubert (1999), “From ultrasoft pseudopotentials to the projector augmented-wave method,”Physical Review B, 59(3) pp. 1758-1775.
    62. Perdew, J. P., K. Burke and M. Ernzerhof (1996), “Generalized gradient approximation made simple,”Physical Review Letters, 77(18) pp. 3865-3868.
    63. Blöchl, P. E. (1994), “Projector augmented-wave method,”Physical Review B, 50(24) pp. 17953-17979.
    64. Van De Walle, A., M. Asta and G. Ceder (2002), “The Alloy Theoretic Automated Toolkit: A user guide,”Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 26(4) pp. 539-553.
    65. Von Pezold, Johann, Alexey Dick, Martin Friák and Jörg Neugebauer (2010), “Generation and performance of special quasirandom structures for studying the elastic properties of random alloys: Application to Al-Ti,”Physical Review B, 81(9).
    66. Monkhorst, H. J. and J. D. Pack (1976), “Special points for Brillouin-zone integrations,”Physical Review B, 13(12) pp. 5188-5192.
    67. Cao, W., S. L. Chen, F. Zhang, K. Wu, Y. Yang, Y. A. Chang, R. Schmid-Fetzer and W. A. Oates (2009), “PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation,”Calphad, 33(2) pp. 328-342.
    68. Jeffery, F. H. (1928), “The lead-tin system of alloys re-examined by an electrical resistance method,”Transactions of the Faraday Society, 24 pp. 209-215.
    69. Honda, K. and H. Abe (1930), “On the Equilibrium Diagram of the Lead-Tin System,”Science Reports, 19 pp. 315-330.
    70. Stockdale, D. (1932), “The Constitution of the Lead-Tin Alloys,”J. Inst. Metals, 49 pp. 267-286.
    71. Stockburn, A. (1940), “The Solubility of Lead in Tin,”J. Inst. Metals, 66 pp. 33-38.
    72. Hultgren, R. and S.A. Lever (1949), “Use of Electrical Resistance Measurements to Determine the Solidus of the Lead-Tin System,”Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME), 185 pp. 67-71.
    73. Borelius, G. (1951), Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME), 191 pp. 447-&.
    74. Fisher, H.J. and A. Phillips (1954), “Viscosity and Density of Liquid Lead-Tin and Antimony-Cadmium Alloys,”Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME), 200 pp. 1060-1070.
    75. Cahn, J.W. and H.N. Treaftis (1960), “The Solubility of Tin in Solid Lead,”Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME), 218 pp. 376-377.
    76. Heumann, T. and H. Wostmann (1972), “THERMODYNAMIC DATA FOR LEAD-TIN ALLOYS AND HYPOTHETICAL TRANSFORMATION OF TETRAGONAL TIN INTO FACE-CENTERED CUBIC MODIFICATION,”Zeitschrift Fur Metallkunde, 63(6) pp. 332-341.
    77. Grone, A. R. (1961), “Current-induced marker motion in copper,”Journal of Physics and Chemistry of Solids, 20(1–2) pp. 88-93.
    78. Chen, W. Y., T. C. Chiu, K. L. Lin and Y. S. Lai (2012), “Electrorecrystallization of intermetallic compound in the Sn0.7Cu solder joint,”Intermetallics, 26 pp. 40-43.
    79. Wu, A. T., A. M. Gusak, K. N. Tu and C. R. Kao (2005), “Electromigration-induced grain rotation in anisotropic conducting beta tin,”Applied Physics Letters, 86(24).
    80. Tu, K. N. (1994), “IRREVERSIBLE-PROCESSES OF SPONTANEOUS WHISKER GROWTH IN BIMETALLIC CU-SN THIN-FILM REACTIONS,”Physical Review B, 49(3) pp. 2030-2034.
    81. Thernqvi, P. and A. Lodding (1966), “SELF-TRANSPORT IN POLYCRYSTALLINE ZN AND PB,”Zeitschrift Fur Naturforschung Part a-Astrophysik Physik Und Physikalische Chemie, A 21(8) pp. 1310.
    82. Wagner, C. (1938), Zeitschrift fur Anorganische und Allgemeine Chemie. Vol. 236.
    83. 林士剛 (2008), 清華化工所博士論文.
    84. 陳志銘 (2002), 清華化工所博士論文.
    85. Hsu, C. M., D. S. H. Wong and S. W. Chen (2007), “Generalized phenomenological model for the effect of electromigration on interfacial reaction,”Journal of Applied Physics, 102(2) pp. 023715-023715-7.
    86. Bertolino, N., J. Garay, U. Anselmi-Tamburini and Z. A. Munir (2002), “High-flux current effects in interfacial reactions in Au–Al multilayers,”TPHB, 82(8) pp. 969-985.
    87. Garay, J. E., U. Anselmi-Tamburini and Z. A. Munir (2003), “Enhanced growth of intermetallic phases in the Ni–Ti system by current effects,”Acta Materialia, 51(15) pp. 4487-4495.
    88. Friedman, J. R., J. E. Garay, U. Anselmi-Tamburini and Z. A. Munir (2004), “Modified interfacial reactions in Ag-Zn multilayers under the influence of high DC currents,”Intermetallics, 12(6) pp. 589-597.
    89. Braunovic, M. and N. Alexandrov (1994), “INTERMETALLIC COMPOUNDS AT ALUMINUM-TO-COPPER ELECTRICAL INTERFACES - EFFECT OF TEMPERATURE AND ELECTRIC-CURRENT,”Ieee Transactions on Components Packaging and Manufacturing Technology Part A, 17(1) pp. 78-85.
    90. Du, M. Y., C. M. Chen and S. W. Chen (2003), “Effects upon interfacial reactions by electric currents of reversing directions,”Materials Chemistry and Physics, 82(3) pp. 818-825.
    91. Gan, H. and K. N. Tu (2005), “Polarity effect of electromigration on kinetics of intermetallic compound formation in Pb-free solder V-groove samples,”Journal of Applied Physics, 97(6).
    92. Kumar, A., M. He, Z. Chen and P. S. Teo (2004), “Effect of electromigration on interfacial reactions between electroless Ni-P and Sn-3.5% Ag solder,”Thin Solid Films, 462 pp. 413-418.
    93. Lee, M. S., C. Chen and C. R. Kao (1999), “Formation and absence of intermetallic compounds during solid-state reactions in the Ni-Bi system,”Chemistry of Materials, 11(2) pp. 292-297.
    94. Nash, P. (1985), “The Bi−Ni (Bismuth-Nickel) system,”Bulletin of Alloy Phase Diagrams, 6(4) pp. 345-347.
    95. Feschotte, P. and J. M. Rosset (1988), “Equilibres de phases dans le systeme binaire nickel-bismuth,”Journal of the Less Common Metals, 143(1–2) pp. 31-37.
    96. Vassilev, G. P., X. J. Liu and K. Ishida (2005), “Experimental studies and thermodynamic optimization of the Ni-Bi system,”Journal of Phase Equilibria and Diffusion, 26(2) pp. 161-168.
    97. Seo, S. K., M. G. Cho and H. M. Lee (2007), “Thermodynamic assessment of the Ni-Bi binary system and phase equilibria of the Sn-Bi-Ni ternary system,”Journal of Electronic Materials, 36(11) pp. 1536-1544.
    98. Portevin, M.A. (1908), “The alloys of nickel and bismuth,”Rev Met, 5 pp. 110-120.
    99. Voss, G. (1908), “The nickel-bismuth system.,”Z Anorg Chem., 57 pp. 52-58.
    100. Kumar, R. and Y. N. Sadana (1975), “Electrodeposition of alloys IV. Electrodeposition and X-ray structure of bismuth-nickel alloys from aqueous solutions,”Journal of the Less Common Metals, 43(1–2) pp. 259-265.

    下載圖示 校內:2014-08-13公開
    校外:2014-08-13公開
    QR CODE