| 研究生: |
黃東藝 Huang, Dong-Yi |
|---|---|
| 論文名稱: |
堆疊式封裝之封膠三維黏彈行為量測與翹曲模擬 Characterization of 3-D Viscoelastic Behavior of Molding Compound and Application to Package-on-Package Warpage Simulation |
| 指導教授: |
屈子正
Chiu, Tz-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 環氧樹脂封膠 、黏彈性本構模型 、動態機械分析 、數值轉換近似法 |
| 外文關鍵詞: | epoxy molding compound, viscoelastic, dynamic mechanical analysis, interconversion |
| 相關次數: | 點閱:166 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電子封裝結構中,高分子材料扮演保護矽晶積體電路不受外在環境影響的重要角色。當封裝結構中高分子材料受到製程或使用情況下之溫度變化時,由於其與矽晶間之熱膨脹係數或收縮的不匹配,容易導致元件發生翹曲。對堆疊式封裝產品而言,在整個製程及電路堆疊迴銲過程中,元件需維持一定的平坦度,倘若封裝體本身翹曲量太大或是連接元件製程產生過大翹曲變化,將會造成堆疊困難進而影響製程良率及可靠度。
本文針對堆疊式封裝體中環氧樹脂封膠,利用實驗方法量測其材料性質並建立黏彈性三維本構模型。實驗包含拉伸式與扭轉式動態機械分析,所量測封膠黏彈性機械性質包括與時間-溫度相關的楊氏儲存模數和剪切儲存模數,然後利用數值轉換近似法找到輸入有限元素軟體需要的黏彈性本構模型,並搭配其它材料的彈性模型套入有限元素法計算中,模擬封裝體在受溫度變化下的翹曲量且與陰影疊紋實驗結果比對。然而由實驗所得封膠黏彈性三維本構模型,因可能的實驗誤差而沒有得到理想蒲松比趨勢,但經過擬合修正實驗儲存模數主曲線後,套入有限元素軟體中模擬所得翹曲量趨勢與實驗量測較為吻合。從模擬結果發現,芯基板熱收縮為造成翹曲主要原因,且底填膠與防焊綠漆材料也會造成翹曲量趨勢的變化,而封膠在高溫下因結構處於橡膠態對翹曲行為影響並不大。
In this thesis an experimental procedure for characterizing three-dimensional viscoelastic behavior of epoxy molding compound (EMC) is presented. By using both tensile and torsional dynamic mechanical analyses (DMA) and thermal mechanical analyses (TMA), the viscoelastic constitutive model of a low-filler-percentage EMC is developed. Finite element analyses incorporating the viscoelastic EMC constitutive behavior are conducted to simulate warpage evolution of a package-on-package (PoP) device during solder reflow process. The numerical results are compared to shadow Moiré warpage measurements for validating the constitutive model.
[1] IC Packaging/Semiconductor Packaging, Retrieved June 11, 2014, from http://www.amkor.com/farcryimages/images/SourceImage/TMV_PoP_Stackup.gif
[2] 黃鴻瑋,電子構裝後硬化製程翹曲之模擬,碩士論文,國立成功大學,2011。
[3] J. D. Ferry, Viscoealstic Properties of Polymer, 3rd edition, John Wiley and Sons Inc., New York, 1980.
[4] R. A. Schapery and S. W. Park, “Methods of interconversion between linear viscoelastic material functions. Part II—an approximate analytical method,” International Journal of Solids and Structures, Vol. 36, pp. 1677-1699, 1999.
[5] S. L. Simon, G. B. Mckenna and O. Sindt, “Modeling the evolution of the dynamic mechanical properties of a commercial epoxy during cure after gelation,” Journal of Applied Polymer Science, Vol. 76, pp. 495-508, 2000.
[6] N. W. Tschoegl, W. G. Knauss and I. Emri, “Poisson’s ratio in linear viscoelasticity–a critical review,” Mechanics of Time-Dependent Materials, Vol. 6, pp. 3-51, 2002.
[7] R. B. R. Van Silfhout, J. G. J. Beijer, K. Zhang and W. D. van Driel, “Modelling methodology for linear elastic compound modelling versus visco-elastic compound modelling,” Proceedings of the 6th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, pp. 483-489, 2005.
[8] H. Tang, J. Nguyen, J. Zhang and I. Chien, “Warpage study of a Package on Package Configuration,” Proceedings of the 2007 International Conference on High Density Packaging and Microsystem Integration, pp. 1-5, 2007.
[9] P. H. Mott, J. R. Dorgan and C. M. Roland, “The bulk modulus and Poisson’s ratio of “incompressible” materials,” Journal of Sound and Vibration, Vol. 312, pp. 572-575, 2008.
[10] Y. K. Kim and S. R. White, “Stress relaxation behavior of 3501-6 epoxy resin during cure,” Polymer Engineering and Science, Vol. 36, p. 2852, 1996.
[11] X. Ma, K. M. B. Jansen, G. Q. Zhang and L. J. Ernst, “Filler Contents Effects on the Moisture Absorption and Viscoelasticity of thermosetting IC packaging polymers,” Proceedings of the 7th International Conference on Electronics Packaging Technology, pp. 1-6, 2006.
[12] D. G. Yang, K. M. B. Jansen, L. J. Ernst, G. Q. Zhang, H. J. L. Bressers and J. H. J. Janssen, “Effect of filler concentration of rubbery shear and bulk modulus of molding compounds,” Microelectronics reliability, Vol. 47, pp. 233-239, 2007.
[13] R. Löw and J. Wilde, “Comparison of bulk modulus determined by transient bulk creep experiment and direct optical measurement of Poisson’s ratio,” Proceedings of the 9th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, pp. 1-6, 2008.
[14] W. Lin and M. W. Lee, “PoP/CSP warpage evaluation and viscoelastic modeling,” Proceedings of the 58th Electronic Components and Technology Conference, pp. 1576-1581, 2008.
[15] M. Sadeghinia, K. M. B. Jansen and L. J. Ernst, “Characterization and modeling the thermo-mechanical cure-dependent properties of epoxy molding compound,” International Journal of Adhesion and Adhesives, Vol. 32, pp. 82-88, 2012.
[16] M. Sadeghinia, K. M. B. Jansen and L. J. Ernst, “Characterization of the viscoelastic properties of an epoxy molding compound during cure,” Microelectronics Reliability, Vol. 52, pp. 1711-1718, 2012.
[17] D. J. Plazek and I. C. Chay, “The evolution of the viscoelastic retardation spectrum during the development of an epoxy resin network,” Journal of Polymer Science: Part B: Polymer Physics, Vol. 29, pp. 17-29, 1991.
[18] R. C. Dunne, An Integrated Process Modeling Methodology and Module for Sequential Multilayered High-Density Substrate Fabrication for Microelectronic Packages, Ph. D. Dissertation, Georgia Technology Institute, 2000.
[19] G. M. Thomas, The rheology handbook: for users of rotational and oscillatory rheometers, Vincentz Network GmbH & Co KG, 2006.
校內:2016-08-08公開