| 研究生: |
陳慧慈 Chen, Hui-Tzu |
|---|---|
| 論文名稱: |
CDCP1在具有Gemcitabine抗藥性的尿路上皮癌中所扮演的角色 Roles of CUB Domain-Containing Protein 1 in Gemcitabine-Resistant Urothelial Carcinoma |
| 指導教授: |
黃暉升
Huang, Huei-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 尿路上皮癌 、抗藥性 |
| 外文關鍵詞: | CDCP1, gemcitabine, drug resistant, urothelial carcinoma |
| 相關次數: | 點閱:91 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
尿路上皮癌 (urothelial carcinoma, UC) 是指在泌尿系統中所發生的癌症,其發生位置可能是腎盂、輸尿管、膀胱等尿路途徑,其中又以膀胱癌最為常見。根據美國統計男性最常見的癌症中,尿路上皮癌位居第四名。尿路上皮癌後期或是罹患轉移性尿路上皮癌的患者常常使用複合藥物進行化療,其中,gemcitabine因為毒性較低而被作為一線藥物使用,然而有越來越多的患者表現出對gemcitabine的抗藥性,這使得尿路上皮癌在治療上愈發困難,復發率也逐年攀升,至今已有高達70%的復發率,因此,了解gemcitabine抗藥性的機制將有助於發展有效的尿路上皮癌治療策略。CUB Domain-containing Protein 1 (CDCP1) 為一個表現於細胞膜的跨膜醣蛋白,我們將尿路上皮癌細胞株T24與其抗藥性細胞株T24-GR進行比較,發現抗藥性細胞株中有較高的CDCP1蛋白表現量,因此在本篇研究的實驗中,我們將探討CDCP1與gemcitabine抗藥性的關聯性。我們利用轉染技術在細胞中過度表現CDCP1,同時也使用CRISPR/Cas9的技術將細胞中的CDCP1剔除,我們發現過度表現CDCP1的細胞株具有較高的gemcitabine抗藥性,此外,CDCP1過度表現的細胞表現出更高的腫瘤成球能力、轉移能力和失巢凋亡抗性,而這些功能性檢測能力在CDCP1剔除的細胞則有較低的表現。另外, TGFβ1可能阻斷尿路上皮癌細胞中CDCP1的裂解,此機制有待進一步闡明。綜上所述,我們推測CDCP1會參與調控尿路上皮癌細胞的抗藥性,並且會促進細胞產生較高的幹細胞特性、細胞轉移能力以及對失巢凋亡的抗性。
Urothelial carcinoma (UC) is the fourth common cancer in men in the United States of America. Patients with advanced or metastatic UC are usually treated with systemic chemotherapy using multidrug regimens. Gemcitabine has been proven as a first-line drug in UC because of its low toxicity profile. However, more and more UC patients express no response to gemcitabine in the therapies. This reveals the needs for the understanding of the mechanisms of gemcitabine resistance, which might develop a novel strategy for effective treatment. CUB Domain-Containing Protein 1 (CDCP1) is a transmembrane cell surface glycoprotein and overexpresses in some cancers. In our results, we overexpressed and silenced CDCP1 in UC cells by using CRISPR/cas9, respectively. CDCP1-overexpressed UC cells exhibited resistance to gemcitabine while CDCP1-silenced UC cells had lower resistance to gemcitabine. Moreover, CDCP1-overexpressed UC cells showed higher ability of tumor sphere formation, migration and anoikis resistance, and CDCP1-silenced UC cells showed lower ability of these functional assays. Furthermore, TGFβ1 might prevent the cleavage of CDCP1 in T24 cells. The mechanism needs to be further elucidated. Taken together, we suggest that CDCP1 might play a role in the gemcitabine-resistant UC cells. In addition, CDCP1 might also participate in the progression of UC, such as increasing migration ability, anoikis resistance and formatting tumor spheroids.
1. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 2020. 70(1): p. 7-30.
2. Wu, X.R., Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer, 2005. 5(9): p. 713-25.
3. Lee, C.H., et al., Role of imaging in the local staging of urothelial carcinoma of the bladder. American Journal of Roentgenology, 2017. 208(6): p. 1193-1205.
4. Kaseb, H. and N.R. Aeddula, Cancer, bladder, in StatPearls [Internet]. 2019, StatPearls Publishing.
5. Steinberg, G., D. Trump, and K. Cummings, Metastatic bladder cancer. Natural history, clinical course, and consideration for treatment. The Urologic clinics of North America, 1992. 19(4): p. 735-746.
6. Liebert, M. and J. Seigne. Characteristics of invasive bladder cancers: histological and molecular markers. in Seminars in urologic oncology. 1996.
7. Mari, A., et al., Genetic determinants for chemo-and radiotherapy resistance in bladder cancer. Translational andrology and urology, 2017. 6(6): p. 1081.
8. Toschi, L., et al., Role of gemcitabine in cancer therapy. 2005.
9. Veltkamp, S.A., et al., New insights into the pharmacology and cytotoxicity of gemcitabine and 2′, 2′-difluorodeoxyuridine. Molecular Cancer Therapeutics, 2008. 7(8): p. 2415-2425.
10. Vallo, S., et al., Drug-resistant urothelial cancer cell lines display diverse sensitivity profiles to potential second-line therapeutics. Translational oncology, 2015. 8(3): p. 210-216.
11. von der Maase, H., et al., Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. Journal of clinical oncology, 2005. 23(21): p. 4602-4608.
12. Pectasides, D., M. Pectasides, and T. Economopoulos, Systemic chemotherapy in locally advanced and/or metastatic bladder cancer. Cancer treatment reviews, 2006. 32(6): p. 456-470.
13. Brown, T.A., et al., Adhesion or plasmin regulates tyrosine phosphorylation of a novel membrane glycoprotein p80/gp140/CUB domain-containing protein 1 in epithelia. J Biol Chem, 2004. 279(15): p. 14772-83.
14. Hooper, J.D., et al., Subtractive immunization using highly metastatic human tumor cells identifies SIMA135/CDCP1, a 135 kDa cell surface phosphorylated glycoprotein antigen. Oncogene, 2003. 22(12): p. 1783-94.
15. Bhatt, A.S., et al., Adhesion signaling by a novel mitotic substrate of src kinases. Oncogene, 2005. 24(34): p. 5333-43.
16. Bork, P. and G. Beckmann, The CUB domain. A widespread module in developmentally regulated proteins. J Mol Biol, 1993. 231(2): p. 539-45.
17. Scherl-Mostageer, M., et al., Identification of a novel gene, CDCP1, overexpressed in human colorectal cancer. Oncogene, 2001. 20(32): p. 4402-8.
18. Awakura, Y., et al., Microarray-based identification of CUB-domain containing protein 1 as a potential prognostic marker in conventional renal cell carcinoma. J Cancer Res Clin Oncol, 2008. 134(12): p. 1363-9.
19. Miyazawa, Y., et al., CUB domain-containing protein 1, a prognostic factor for human pancreatic cancers, promotes cell migration and extracellular matrix degradation. Cancer Res, 2010. 70(12): p. 5136-46.
20. Razorenova, O.V., et al., VHL loss in renal cell carcinoma leads to up-regulation of CUB domain-containing protein 1 to stimulate PKC{delta}-driven migration. Proc Natl Acad Sci U S A, 2011. 108(5): p. 1931-6.
21. Perry, S.E., et al., Expression of the CUB domain containing protein 1 (CDCP1) gene in colorectal tumour cells. FEBS Lett, 2007. 581(6): p. 1137-42.
22. Wong, C.H., et al., Phosphorylation of the SRC epithelial substrate Trask is tightly regulated in normal epithelia but widespread in many human epithelial cancers. Clin Cancer Res, 2009. 15(7): p. 2311-22.
23. Xia, Y., S.G. Gil, and W.G. Carter, Anchorage mediated by integrin alpha6beta4 to laminin 5 (epiligrin) regulates tyrosine phosphorylation of a membrane-associated 80-kD protein. J Cell Biol, 1996. 132(4): p. 727-40.
24. Uekita, T., et al., CUB domain-containing protein 1 is a novel regulator of anoikis resistance in lung adenocarcinoma. Mol Cell Biol, 2007. 27(21): p. 7649-60.
25. Uekita, T., et al., CUB-domain-containing protein 1 regulates peritoneal dissemination of gastric scirrhous carcinoma. Am J Pathol, 2008. 172(6): p. 1729-39.
26. He, Y., et al., Proteolysis-induced N-terminal ectodomain shedding of the integral membrane glycoprotein CUB domain-containing protein 1 (CDCP1) is accompanied by tyrosine phosphorylation of its C-terminal domain and recruitment of Src and PKCdelta. J Biol Chem, 2010. 285(34): p. 26162-73.
27. Benes, C.H., et al., The C2 domain of PKCdelta is a phosphotyrosine binding domain. Cell, 2005. 121(2): p. 271-80.
28. Yun, S.-M., S.-H. Kim, and E.-H. Kim, The Molecular Mechanism of Transforming Growth Factor-β Signaling for Intestinal Fibrosis: A Mini-Review. Frontiers in Pharmacology, 2019. 10(162).
29. Zhang, N., et al., TGF-β1 promotes the migration and invasion of bladder carcinoma cells by increasing fascin1 expression. Oncology reports, 2016. 36(2): p. 977-983.
30. Gautam, K.A., et al., c. 29C> T polymorphism in the transforming growth factor-β1 (TGFB1) gene correlates with increased risk of urinary bladder cancer. Cytokine, 2015. 75(2): p. 344-348.
31. Zhuang, J., et al., TGFβ1 promotes gemcitabine resistance through regulating the LncRNA-LET/NF90/miR-145 signaling axis in bladder cancer. Theranostics, 2017. 7(12): p. 3053.
32. Stojnev, S., et al., Prognostic impact of canonical TGF-β signaling in urothelial bladder cancer. Medicina, 2019. 55(6): p. 302.
33. Boguslawska, J., et al., TGF-β and microRNA Interplay in Genitourinary Cancers. Cells, 2019. 8(12): p. 1619.
34. Wortmann, A., et al., The cell surface glycoprotein CDCP1 in cancer--insights, opportunities, and challenges. IUBMB Life, 2009. 61(7): p. 723-30.
35. Uekita, T. and R. Sakai, Roles of CUB domain‐containing protein 1 signaling in cancer invasion and metastasis. Cancer science, 2011. 102(11): p. 1943-1948.
36. He, Y., et al., Elevated CDCP1 predicts poor patient outcome and mediates ovarian clear cell carcinoma by promoting tumor spheroid formation, cell migration and chemoresistance. Oncogene, 2016. 35(4): p. 468-478.
37. Boyer, A.P., et al., Quantitative proteomics with siRNA screening identifies novel mechanisms of trastuzumab resistance in HER2 amplified breast cancers. Molecular & Cellular Proteomics, 2013. 12(1): p. 180-193.
38. Kim, Y.-N., et al., Anoikis resistance: an essential prerequisite for tumor metastasis. International journal of cell biology, 2012. 2012.
39. Fischer, K.R., et al., Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature, 2015. 527(7579): p. 472-476.
40. Simpson, C.D., K. Anyiwe, and A.D. Schimmer, Anoikis resistance and tumor metastasis. Cancer letters, 2008. 272(2): p. 177-185.
41. Niero, E.L., et al., The multiple facets of drug resistance: one history, different approaches. Journal of Experimental & Clinical Cancer Research, 2014. 33(1): p. 37.
42. Fabregat, I., A. Malfettone, and J. Soukupova, New insights into the crossroads between EMT and stemness in the context of cancer. Journal of clinical medicine, 2016. 5(3): p. 37.
43. Phi, L.T.H., et al., Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem cells international, 2018. 2018.
44. Prieto-Vila, M., et al., Drug resistance driven by cancer stem cells and their niche. International journal of molecular sciences, 2017. 18(12): p. 2574.
45. Tong, H., et al., Starvation‐induced autophagy promotes the invasion and migration of human bladder cancer cells via TGF‐β1/Smad3‐mediated epithelial‐mesenchymal transition activation. Journal of cellular biochemistry, 2019. 120(4): p. 5118-5127.
46. Island, P. and P.F. Sheets, Bladder Cancer Treatment (PDQ®): Treatment-Health Professional Information [NCI].
47. Sternberg, C. Gemcitabine in bladder cancer. in Seminars in oncology. 2000.
48. Abugomaa, A., et al., Emerging roles of cancer stem cells in bladder cancer progression, tumorigenesis, and resistance to chemotherapy: A potential therapeutic target for bladder cancer. Cells, 2020. 9(1): p. 235.
49. Predes, D., et al., CUB domain-containing protein 1 (CDCP1) binds transforming growth factor beta family members and increase TGF-β1 signaling pathway. Experimental cell research, 2019. 383(1): p. 111499.
校內:2023-09-01公開