| 研究生: |
蔡政杰 Tsai, Cheng-Chieh |
|---|---|
| 論文名稱: |
利用光流體裝置量測尿比重之研究 Optofluidic Device for Urine Specific Gravity Measurement |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 光流體 、折射率 、濃度 、尿比重 、影像分析 |
| 外文關鍵詞: | optofluidics, refractive index, concentration, urine specific gravity, image analysis |
| 相關次數: | 點閱:83 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來光學偵測方式被廣泛地使用在微流體生物晶片上並應用於生物或是化學檢測。本研究使用微機電製程技術製作光流體晶片,其主要的功用分為兩大部分:(1)用於測量液體的折射率及濃度 (2)用於檢測尿比重。
利用影像分析的技術,希望可以製作出不需要雷射儀器、CCD攝影機、示波器等較昂貴的實驗儀器,只需要單眼相機與電腦分析軟體,就可以測量液體的折射率及檢測尿比重。
本研究中的光流體晶片是利用影像分析的方法來量測,我們在晶片中設計一條50μm寬的直線圖案,通入不同折射率的待測液體至量測腔體中,透過待測液體去觀察直線圖案,由於折射率的不同,直線圖案會產生位置上的偏移,以空氣為基準,可以得到不同折射率的偏移距離,我們便可以利用此偏移距離的特性,來做折射率、濃度的量測與尿比重的檢測。
在量測液體的折射率及濃度的部分,我們選用了氯化鈉、氯化鈣、氯化鋰,這3種化學物質,調製出不同濃度跟折射率,利用本研究的光流體晶片以影像分析的方法來做量測。在檢測尿比重的部分,我們檢測測試者的尿液來做檢測。因為尿液中葡萄糖的濃度是影響尿比重正常與否的最大因素,所以利用飽和濃度的葡萄糖水加入檢體中確認葡萄糖與尿比重的關係。
利用影像分析來做檢測的技術,可以運用在許多光流體檢測元件上,相較於傳統的光學元件,減少使用了昂貴儀器的使用,而且也改善折射率量測範圍上的限制。
Recently, optical methods have been widely used for biological and chemical detection in microfluidics or lab-on-a-chip systems. In this research, we use MEMS technology to fabricate the optofluidic chip. There are two major functions in this device: (1) the measurement of refractive index and concentration and (2) the detection of urine specific gravity.
By using image analysis, we design an optofluidic device to measure refractive index, concentration and urine specific gravity without expensive instruments such as laser device, CCD camera, and oscilloscope. We only use camera and computer analysis software to complete the research.
In this study, we design a line pattern which is 50μm wide and observe this pattern through the refractive index of different analytes. According to difference of refractive index, the position of line pattern which we observed will change. We set the position of air as a standard position. Then, we define the difference of position between air and analytes as departure distance. We can use departure distance to identify the refractive index or urine specific gravity of analytes.
For refractive index measurement, we select three chemical solutions of NaCl, LiCl and CaCl2 that have different concentrations to demonstrate the proposed optofluidic device. For urine specific gravity measurement, we detect urine of testers to measure the urine specific gravity. Due to the glucose is the major factor which increases the urine specific gravity, we mix saturated solution of glucose into urine of tester to verify the relationship between the glucose and the urine specific gravity.
Compare to traditional optic device, image analysis technology reduced the cost of expensive instrument and improved the limit of refractive index measuring range. The image analysis technology can be applied to optofluidic measurement on a chip by a simple, fast and user-friendly.
參考文獻
1. Manz, A., Graber, N., and Widmer, H.M., "Miniaturized Total Chemical-Analysis Systems - A Novel Concept for Chemical Sensing." Sensors and Actuators B-Chemical, 1990. 1(1-6): p. 244-248.
2. Manz, A., Harrison, D.J,Verpoorte, E.M.J., Fettinger, J.C., Paulus, A., Ludi, H., Widmer, H.M., "Planar Chips Technology for Miniaturization and Integration of Separation Techniques into Monitoring Systems - Capillary Electrophoresis on a Chip. " Journal of Chromatography, 1992. 593(1-2): p. 253-258.
3. Weibel, D.B. and Whitesides, G.M., "Applications of Microfluidics in Chemical Biology. " Current Opinion in Chemical Biology, 2006. 10(6): p. 584-591.
4. Whitesides, G.M., "The Origins and the Future of Microfluidics." Nature, 2006. 442(7101): p. 368-373.
5. Squires, T.M. and Quake, S.R., "Microfluidics: Fluid Physics at the Nanoliter Scale." Reviews of Modern Physics, 2005. 77(3): p. 977-1026.
6. Neuman, K.C. and Block, S.M., "Optical Trapping." Review of Scientific Instruments, 2004. 75(9): p. 2787-2809.
7. Novotny, L., Bian, R.X., and Xie, X.S., "Theory of Nanometric Optical Tweezers." Physical Review Letters, 1997. 79(4): p. 645-648.
8. Wang, M. D., Yin, H., Landick, R., Gelles, J., Block, S. M., "Stretching DNA with Optical Tweezers." Biophysical Journal, 1997. 72(3): p. 1335-1346.
9. Yang, C. and Psaltis, D., "Optofluidics Can Create Small, Cheap Biophotonic Devices." Laser Focus World, 2006. 42(7): p. 85-88.
10. Pixton, B.M. and Greivenkamp, J.E.," Automated Measurement of the Refractive Index of Fluids." Applied Optics, 2008. 47(10): p. 1504-1509.
11. Jaaskelainen, A., Sivennoinen, R., Peiponen, K.E., Raty, J., "On Measurement of Complex Refractive Index of Liquids by Diffractive Element-based Sensor." Optics Communications, 2000. 178(1-3): p. 53-57.
12. Van Keuren, E.R., "Refractive Index Measurement Using Total Internal Reflection." American Journal of Physics, 2005. 73(7): p. 611-614.
13. Yang, S.Y., Chen, Y.F., Horng, H.E., Hong, H.E., Hong, C.Y., Tse, W.S., Yang, H.C., "Magnetically-Modulated Refractive Index of Magnetic Fluid Films." Applied Physics Letters, 2002. 81(26): p. 4931-4933.
14. Jin, Y. L., Chen, J. Y., Xu, L., Wang, P. N., "Refractive Index Measurement for Biomaterial Samples by Total Internal Reflection." Physics in Medicine and Biology, 2006. 51(20): p. N371-N379.
15. Dong, L., Agarwal, A.K., Beebe, D.J., Jiang, H.R., "Adaptive Liquid Microlenses Activated by Stimuli-Responsive Hydrogels." Nature, 2006. 442(7102): p. 551-554.
16. Kuiper, S. and Hendriks, B.H.W., "Variable-Focus Liquid Lens for Miniature Cameras." Applied Physics Letters, 2004. 85(7): p. 1128-1130.
17. Moran, P.M., Dharmatilleke, S., Khaw, A.H., Tan, K.W., Chan, M.L., Rodriguez, I., "Fluidic Lenses with Variable Focal Length." Applied Physics Letters, 2006. 88(4).
18. Hendriks, B.H.W., Kuiper, S., Van As, M.A.J., Renders, C.A., Tukker, T.W., "Electrowetting-Based Variable-Focus Lens for Miniature Systems." Optical Review, 2005. 12(3): p. 255-259.
19. Jian, A.Q., Zhang, X.M., Zhu, WM., Yu, M., "Optofluidic Refractometer Using Resonant Optical Tunneling Effect." Biomicrofluidics, 2010. 4(4).
20. Polynkin, P., Polynkin, A., Peyghambarian, N., Mansuripur, M., "Evanescent Field-Based Optical Fiber Sensing Device for Measuring the Refractive Index of Liquids in Microfluidic Channels." Optics Letters, 2005. 30(11): p. 1273-1275.
21. Axelrod, D., Burghardt, T.P., and Thompson, N.L., "Total Internal-Reflection Fluorescence." Annual Review of Biophysics and Bioengineering, 1984. 13: p. 247-268.
22. Seow, Y.C., Lim, S.P., Khoo, B.C., Lee, H.P., "An Optofluidic Refractive Index Sensor Based on Partial Refraction." Sensors and Actuators B-Chemical, 2010. 147(2): p. 607-611.
23. Weber, E. and Vellekoop, M.J., "Optofluidic Micro-Sensors for the Determination of Liquid Concentrations." Lab on a Chip, 2012. 12(19): p. 3754-3759.
24. Chao, K.S., Lin, T.Y., and Yang, R.J., "Two Optofluidic Devices for the Refractive Index Measurement of Small Volume of Fluids." Microfluidics and Nanofluidics, 2012. 12(5): p. 697-704.
25. Calixto, S., Rosete-Aguilar, M., Sanchez-Marin, F.J., Calixto-Solano, M., Lopez-Mariscal, C., "Refractive Index Measurement through Image Analysis with an Optofluidic Device." Optics Express, 2012. 20(3): p. 2073-2080.
26. Calixto, S., Sanchez-Marin, F.J., and Sanchez-Morales, M.E.," Pressure Measurements Through Image Analysis." Optics Express, 2009. 17(20): p. 17996-18002.
27. Farr, J., W.E.H.H., and White, W. I., "specific gravity." Miles Science Journal.
28. Strasinger, S.K., "Urinalysis and Body Fluids, 3rd Edition." F.A. Davis Company,1994. P.37-41
29. Chadha, V., Garg, U., and Alon, U.S., "Measurement of Urinary Concentration: A Critical Appraisal of Methodologies." Pediatric Nephrology, 2001. 16(4): p. 374-382.
30. Sparks, S.A. and Close, G.L., "Validity of a Portable Urine Refractometer: The Effects of Sample Freezing." Journal of Sports Sciences, 2013. 31(7): p. 745-749.
31. George, J.W., "The Usefulness and Limitations of Hand-Held Refractometers in Veterinary Laboratory Medicine: An Historical and Technical review." Veterinary Clinical Pathology, 2001. 30(4): p. 201-210.
32. Guo, H.L., Zhao, P., Xiao, G.Z., Zhang, Z.Y., Yao, J.P., "Optical Manipulation of Microparticles in an SU-8/PDMS Hybrid Microfluidic Chip Incorporating a Monolithically Integrated On-Chip Lens Set." Ieee Journal of Selected Topics in Quantum Electronics, 2010. 16(4): p. 919-926.
33. Schneegass, I., Brautigam, R., and Kohler, J.M., "Miniaturized Flow-through PCR with Different Template Types in a Silicon Chip Thermocycler." Lab on a Chip, 2001. 1(1): p. 42-49.
34. Yamamoto, T., Nojima, T. , and Fujii, T., "PDMS-Glass Hybrid Microreactor Array with Embedded Temperature Control Device." Application to cell-free protein synthesis." Lab on a Chip, 2002. 2(4): p. 197-202.
35. Lorenz, H., Despont, M., Fahrni, N., Brugger, J., Vettiger, P., Renaud, P., "High-Aspect-Ratio, Ultrathick, Negative-Tone Near-UV Photoresist and its Applications for MEMS." Sensors and Actuators a-Physical, 1998. 64(1): p. 33-39.
36. Zhang, J., Tan, K.L., and Gong, H.Q., "Characterization of the Polymerization of SU-8 Photoresist and its Applications in Micro-Electro-Mechanical Systems (MEMS)." Polymer Testing, 2001. 20(6): p. 693-701.
37. McDonald, J.C., Duffy, D.C., Anderson, J.R., Chiu, D.T., Wu, H.K., Schueller, O.J.A., Whitesides, G.M., "Fabrication of Microfluidic Systems in Poly(dimethylsiloxane)." Electrophoresis, 2000. 21(1): p. 27-40.
38. Duffy, D.C., McDonald, J.C., Schueller, O.J.A., Whitesides, G.M., "Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane)." Analytical Chemistry, 1998. 70(23): p. 4974-4984.
39. Ng, J.M.K., Gitlin, I., Stroock, A.D., Whitesides, G.M., "Components for Integrated Poly(dimethylsiloxane) Microfluidic Systems." Electrophoresis, 2002. 23(20): p. 3461-3473.
40. McDonald, J.C. and Whitesides, G.M.," Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices." Accounts of Chemical Research, 2002. 35(7): p. 491-499.
41. Weast, R.C., "CRC Handbook of Chemistry and Physics 1st Student Edition." CRC Press, 1988.