| 研究生: |
洪從軒 Hong, Tsung-hsuan |
|---|---|
| 論文名稱: |
鎳鐵/鈦酸鍶鋇、鎳鐵/鈦酸鋇雙層膜系統之多鐵性研究 Study of multiferroic properties in NiFe/BST、NiFe/BTO bilayer thin film system |
| 指導教授: |
陳宜君
Chen, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 鈦酸鍶鋇 、多鐵性 、鈦酸鋇 、靜電力顯微鏡 |
| 外文關鍵詞: | multiferroic, BST, BTO, EFM |
| 相關次數: | 點閱:78 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,主要探討奈米複合鐵磁/鐵電雙層膜的多鐵性效應。利用調整製程參數形成不同微結構與介電特性的鐵電薄膜,並研究不同介面粗糙度之鎳鐵(Ni80Fe20)/鈦酸鋇(BaTiO3)與鎳鐵/鈦酸鍶鋇(BaxSr1-xTiO3)雙層膜結構中的磁電耦合機制。鐵電鈦酸鋇材料具壓電性而非線性順電鈦酸鍶鋇材料在相變點有極大的介電常數改變。藉由觀察在鐵電居里溫度附近時磁性的改變,以探討雙層膜介面對多鐵性的影響。
鈦酸鍶鋇鐵電薄膜在550℃退火溫度以上與薄膜厚度90 nm以上時為良好多晶結構,並且極化特性隨退火溫度增加而改善。表面介電常數除受晶相影響外,亦隨應力增強。鎳鐵/鈦酸鍶鋇雙層膜在粗糙度較大的薄膜,具有優良的多鐵性耦合,主要藉由磁電感應產生,在鐵電居里溫度附近有∆M=2 emu/cm3的磁化量改變;而鎳鐵/鈦酸鋇雙層膜則由於有較大的電致伸縮效應,實驗觀察具有更強的多鐵性,在鐵電居里溫度附近有∆M=14 emu/cm3的磁化量改變。
In this study, the multiferroic properties of ferromagnetic/ ferroelectric bilayer nano-composites were investigated. Ferroelectric films with different microstructures and dielectric properties were obtained by controlling the sputtering parameters. To discuss the magneto-electric coupling mechanisms, Ni80Fe20/BaTiO3(BTO), and Ni80Fe20/BaxSr1-xTiO3(BST) bilayer structures were both fabricated to possess smooth and rough interfaces. The dielectric constant of the nonlinear paraelectric BST varied significantly during the phase transition, while the ferroelectric BTO has high piezoelectric constant. The interface effect on the multiferroic properties are thus revealed through the change of magnetic properties when scanning through the ferroelectric Curie temperature.
When the ferroelectric films were annealed above 550℃ and deposited thicker than 90 nm, superior polycrystalline phases were exhibited. The polarization of the films was also improved with higher annealing temperature. Surface dielectric constants were not only affected by the crystal phases, but also increased with the compressive strains. NiFe/BST bilayer structures with rough interface had good multiferroic couplings, which is mainly through the electric-magnetic induction. The variation of magnetization ∆M~2 emu/cm3 is observed in the NiFe/BST film near the ferroelectric Curie temperature. In contrast, due to the large electrostriction coefficient in BTO, the NiFe/BTO bilayer with rough interface had even better multiferroic properties. The robust variation of magnetization ∆M~14 emu/cm3 is obtained.
[1] H. Schmid, “Multi-ferroic magnetoelectrics” , Ferroelectrics 162, 317 (1994).
[2] N. A. Spaldin and M. Fiebig, “The Renaissance of Magnetoelectric Multiferroics”, Science 309, 391 (2005).
[3]. N. A. Hill, “DENSITY FUNCTIONAL STUDIES OF MULTIFERROIC MAGNETOELECTRICS”, Annu. Rev. Mater. Res. 32, 1 (2002).
[4] Dzyaloshinskii I E, “On the magneto-electric effect in antiferromagnets”, Sov. Phys.- JETP 10 628 (1959).
[5] Astrov D. N. , “Magnetoelectric effect in antiferromagnetics”, Sov. Phys.-JETP 11 708 (1960).
[6] F. A. Smolenskiı˘, I. E. Chupis, “Ferroelectromagnets”, Sov. Phys. Usp. 25, 475 (1982).
[7] J. Wang et al., ” Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures”, Science 299, 1719 (2003).
[8]A. M. Glass, “ Principles and Applications of Ferroelectrics and Related Materials”, M. E. Lines Clarendon Press, Oxford (1977).
[9] C. H. Ahn,K. M. Rabe, J.-M. Triscone, “Ferroelectricity at the Nanoscale: Local Polarization in Oxide Thin Films and Heterostructures”, Science, 303, 488 (2004).
[10] Srinivasan G, Hayes R and Bichurin M I, “Low frequency and microwave magnetoelectric effects in thick film heterostructures of lithium zinc ferrite and lead zirconate titanate”, Solid State Commun. 128 261 (2003).
[11] Smolenskii G A and Chupis I E, “ Ferroelectromagnets”, Sov. Phys. Usp.25 475 (1982).
[12]Schmid H, “On a magnetoelectric classification of materials”, Int. J. Magn. 4 337 (1973).
[13] Hill NA, Filippetti A.J, “ Why are there any magnetic ferroelectrics?”, Magn Magn Mater;242–245:976. (2002).
[14] .Hill NA and Rabe K M, “First-principles investigation of ferromagnetism and ferroelectricity in bismuth manganite”, Phys. Rev. B 59 8759 (1999).
[15].Baettig P and Spaldin N A, “ Ab initio prediction of a multiferroic with large polarization and magnetization”, Appl. Phys. Lett. 86 012505 (2005).
[16] Filippetti A and Hill N A .J., “ First principles study of structural, electronic and magnetic interplay in ferroelectromagnetic yttrium manganite”, Magn. Magn. Mater.236 176 (2001).
[17] Van Aken B B and Palstra T T M . “Influence of magnetic on ferroelectric ordering in LuMnO3”, Phys. Rev. B 69 134113 (2004).
[18]Van Aken B B, Palstra T T M, Filippetti A and Spaldin N A., “The origin of ferroelectricity in magnetoelectric YMnO3”, Nat. Mater. 3 164 (2004).
[19] Goto T, Kimura T, Lawes G, Ramirez A P and Tokura Y . ,“Ferroelectricity and Giant Magnetocapacitance in Perovskite Rare-Earth Manganites”, Phys. Rev. Lett. 92 257201 (2004).
[20] Chapon L C, Blake G R, Gutmann M J, Park S, Hur N,Radaelli P G and Cheong S W, “Structural Anomalies and Multiferroic Behavior in Magnetically Frustrated TbMn2O5.” ,Phys. Rev. Lett. 93177402 (2004).
[21] Efremov D V, van den Brink J and Khomskii D I., “ Letter abstract”, Nat.Mater. 3 853 (2004).
[22] Choi T and Lee, “Bi modification for low-temperature processing of YMnO3 thin films”, J. Appl. Phys. Lett. 84, 5043 (2004).
[23] Fujimura N, Sakata H, Ito D, Yoshimura T, Yokota T and Ito T, “ Ferromagnetic and ferroelectric behaviors of A-site substituted YMnO3-based epitaxial thin films”, J. Appl. Phys. 93, 6990 (2003).
[24] Wang J et. al., “Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures”, Science 299, 1719 (2003).
[25] T. Kimura et al., “Magnetic control of ferroelectric polarization”, Nature 426, 55 (2003).
[26] T. Lottermoser et al., “Magnetic phase control by an electric field”, Nature 430, 541 (2004).
[27] H. Zheng et al., “Multiferroic BaTiO3-CoFe2O4 Nanostructures”, Science 303, 661 (2004).
[28] Hyejin Ryu et al.“Magnetoelectric effects of nanoparticulate Pb(Zr0.52Ti0.48)O3–NiFe2O4 composite films”, Appl. Phys. Lett. 89, 102907 (2006)
[29] N. Ortega, P. Bhattacharya, R. S. Katiyar, P. Dutta, A. Manivannan, M. S. Seehra, I. Takeuchi, and S. B. Majumder, “ Multiferroic properties of Pb(Zr,Ti)O3/CoFe2O4 composite thin films”, J. Appl. Phys. 100, 126105 (2006)
[30] Ming Liu, Xin Li, Hassan Imrane, Yajie Chen, Trevor Goodrich, Zhuhua Cai, Katherine S. Ziemer, Jian Y. Huang, and Nian X. Sun, “Synthesis of ordered arrays of multiferroic NiFe2O4- Pb(Zr0.52Ti0.48) O3 core-shell nanowires”, Appl. Phys. Lett. 90, 152501 (2007)
[31] Chun-Gang Duan, S. S. Jaswal, and E.Y. Tsymbal, “Predicted Magnetoelectric Effect in Fe/BaTiO3 Multilayers: Ferroelectric Control of Magnetism”, PRL 97, 047201 (2006).
[32] W. G. Cady, “Piezoelectricity”, McGraw-Hill Book Co. , New York (1946) .
[33] Toshio Mitsui, Itaru Tatsuzaki and Eiji Nakamura, “An introduction to the physics of ferroelectrics”, Gordon and Breach Science Publishers, New York, (1976).
[34] 吳朗, “電子陶瓷-介電”, 全欣資訊圖書 (1994) .
[35] 張凱勛,“鋯鈦酸鉛(Pb(ZrTi)O3, PZT)鐵電材料之奈米電域極化及反轉研究”,成功大學,碩士論文,(2006) .
[36] 薛宇航, “鈦酸鍶鋇與鋯鈦酸鉛之人工晶格薄膜研究” ,清華大學, 碩士論文, (2005) .
[37] 鍾維烈, “鐵電體物理學”, 科學出版社, (2000).
[38] Kenji Uchino. Ferroelectric Devices, Materials Engineering. Marcel Dekker, 2000, ISBN 0-8247-8133-3.
[39] A. F. Devonshire, "Theory of Ferroelectrics," Advances in Physics, 3[10] 85-130.(1954).
[40] Brian James Laughlin, “Sputtered (BaX, Sr1-X)TiO3, BST, Thin Films On Flexible Copper Foils For Use As A Non-Linear Dielectric” , North Carolina State University, Doctor of Philosophy (2006)
[41] Jack C. Burfoot and George W. Taylor, "Polar dielectrics and their
applications ". Los Angeles, CA: University of California Press. (1979).
[42] B. Jaffe, W. R. Cook, Jr. and H. Jaffe, “Piezoelectric ceramics”, Academic Press, India, (1971) .
[43] Y. Xu, “Ferroelectric Materials and Their Applications”, North- Holland, Netherlands, (1991) .
[44] 汪建明,1999,"Ceramic techonlogy handbook",中華民國產業科技發展協進會,中華名國粉末治金協會,頁403-430,六月。
[45] B. A. Baumert, L.-H. Chang, A. T. Matsuda, T.-L. Tsai, C. J. Tracy,
R. B. Gregory, P. L. Fejes, N. G. Cave, and W. Chen, J. Appl. Phys. 82, 2558-2566. (1997)
[46] G. A. Smolenskii and K. I. Rozgachev, "Segnetoelektricheskie Svoistva Tverdykh Rastvorov V Sisteme Titanat Bariya Titanat Strontsiya," Zhurnal Tekhnicheskoi Fiziki, 24[10] 1751-1760.(1954).
[47]稽煥佩,“NiFe薄膜與NiFe/IrMn交換場系統之鐵磁共振現象研究” ,成功大學,碩士論文,(2006)
[48]鄭振東,“實用磁性材料學”,全華科技出版社 (1999)
[49]Robert C.O’Handley, ”Modern Magnetic Materials”, A Wisley
Interscience Publication company (2000)
[50]Robert C.O’Handley, ”Modern Magnetic Materials”, A Wisley Interscience Publication company, p347~352 (2000)
[51] Variation of magnetization and the Landé g factor with thickness in Ni–Fe films.J. P. Nibarger, R. Lopusnik, Z. Celinski, T. J. Silva, Appl. Phys. Lett. 83, 93 (2003)
[52] 施敏著,張俊彥譯,”半導體元件之物理與技術”,儒林,(1990)
頁425。
[53] M. S. Tsai ,S. C. Sun ,T. Y. Tseng , “Effect of oxygen to argon ratio on properties of (Ba,Sr)TiO3 thin films prepared by radio-frequency magnetron sputtering “ J. Appl. Phys. 82, 3482 (1997)
[54]C. S. Hwang, S. O. Park, H. J. Cho, C. S. Kang, H. K. Kang, S. I. Lee, and M. Y. Lee, “Deposition of extremely thin (Ba,Sr)TiO3 thin films for ultra-large-scale integrated dynamic random access memory application” Appl. Phys. Lett. 67, 2819 (1995)
[55] Electrochemical Boundary Conditions for Resistance Degradation of Doped Alkaline-Earth Titanates.R. M. Waser, J. Am. Ceram. Soc. 72, 2234 (1989)
[56] M. Alexe ,A. Gruverman ,”Nanoscale Characterisation of Ferroelectric Materials” ,springer , (2004) 1~3
[57]VEECO “CP-ⅡUser’s Guide Part Ⅰ:Basic Imaging Techniques” 1-7.
[58] Electric Force Microscopy, Surface Potential Imaging,and Surface Electric Modification with the Atomic Force Microscope (AFM) ,VEECO
[59]掃描式探針顯微鏡(SPM)儀器簡介、原理與應用 , Seiko Nano Technology Inc.
[60] Effect of oxygen to argon ratio on properties of (Ba,Sr)TiO3 thin films prepared by radio-frequency magnetron sputtering.M. S. Tsai, S. C. Sun, and T. Y. Tseng, J. Appl. Phys. 82, (1997), 3482.
[61] Woo Young Park, Kun Ho Ahn, and Cheol Seong Hwang, “Effects of in-plane compressive stress on electrical properties of (Ba,Sr)TiO3 thin film capacitors prepared by on- and off-axis rf magnetron sputtering”, Appl. Phys. Lett. 83, 4387 (1993).
[62] Dielectric Properties of (Ba, Sr)TiO3 Thin Films Deposited by RF
Sputtering .Tsuyoshi Horikawa, Noboru Mikami, Tetsuro Mak ita, Junji Tanimura, Masayuki Kataoka, Kazunao Sato and Masahiro Nunoshita, Jpn. J. Appl. Phys. Vol. 32 (1993) 4126-4130