簡易檢索 / 詳目顯示

研究生: 張岱軒
Chang, Thai-shuang
論文名稱: 撒水頭作動時間的實尺寸房間分析
Investigation of Thermal Response of Glass Bulb Sprinklers in a Full-Scale Room
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 80
中文關鍵詞: 壁面效應角落效應自動撒水頭
外文關鍵詞: FDS, corner effect, wall effect, automatic fire sprinklers
相關次數: 點閱:94下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對防火上經常使用的密閉式自動撒水頭,在各種不同火源位置下進行實驗,並分析影響撒水頭作動的因素。同時使用FDS進行模擬,並與實驗結果進行比較。
    在本研究中,火源位置可大致分為火源未靠近任何壁面、火源位於壁面以及火源位於房間角落。實驗中發現火源在靠近壁面時,火焰高度會比較高,也因此加速煙氣的上升,使撒水頭作動時間較快。牆壁對於火源的影響可稱為壁面效應,角落的影響可稱為角落效應,而角落效應對於火場的影響會比壁面效應更大,也因此當火源位於房間角落時的撒水頭作動時間最短。
    比較FDS模擬值與實驗值後發現,兩者之間的溫度值偏差過大,經由熱電偶靈敏度實驗的結果發現在撒水頭作動時,實驗屋所量得的溫度,會與實際火場溫度大約低30~40℃。
    若摒除熱電偶靈敏度的影響,整體而言FDS對此實驗所進行的模擬相當準確,而且溫度的分布趨勢也與實驗大致一樣。

    With regard to the activation of the automatic fire sprinklers, a series of room-fire tests were carried out by means of gas burner.
    The gas burner was placed in three different locations. When the burner was placed against the wall, the height of flame was higher and the movement of smoke was faster, and activation time was reduced. The effect of corner was greater than the effect of wall, so the activation time was the shortest when burner was at the corner. The activation time was longest when the gas burner was placed in the middle of the room. At the same time, all geometries were modeled using the computational fluid dynamics fire model, Fire Dynamics Simulator (FDS), for comparing numerically predicted results with the test data obtained.
    The comparison between the experimental and predicted data has shown that the deviation of temperature was too high, and the reason was found to be the sensitivity of the thermalcouples, according to the result of the sensitivity tests of the thermalcouples the measured temperature differed from the actual environment temperature about 30~40℃.
    In conclusion, the FDS has predicted, with good accuracy, the temperature history and the activation trend of the sprinklers.

    總目錄..................................Ⅰ 表目錄..................................Ⅲ 圖目錄..................................Ⅳ 符號說明................................Ⅵ 一、前言................................1 1-1 文獻回顧............................2 1-2 研究目的........................... 6 二、實驗設備與規劃......................7 2-1 實驗設備............................7 2-1-1 實驗場整體架構................7 2-1-2 撒水系統......................8 2-1-3 燃燒器系統....................8 2-1-3 量測系統......................10 2-1-4 火源..........................12 2-1-5 熱電偶靈敏度實驗設備..........12 2-2 實驗規劃............................13 三、FDS數值模擬.........................15 3-1 模型建立的理論基礎..................15 3-1-1 熱流模型......................15 3-1-2 燃燒模型......................16 3-1-3 熱輻射模型........................18 3-2 模擬參數設置........................19 四、結果與討論..........................21 4-1 火源位置對於撒水頭作動時間之影響....21 4-2 熱電偶靈敏度測試....................23 4-3 火源位於房間中央....................24 4-4 火源位於房間壁面....................27 4-5 火源位於房間角落....................28 4-6 實驗量測誤差........................29 4-6-1 撒水頭........................29 4-6-2 防火棉........................30 4-6-3 通風口........................31 五、結論................................32 六、參考文獻............................34 七、圖表................................39 八、附錄................................78

    1.中華民國內政部消防署, http://www.nfa.gov.tw/
    2.Pickard, R. W., Hird, D., and Nash, P., “The Thermal Testing of Fire Sensitive Detectors,” F.R. Note 247, Fire Research Station, Borehamwood, England, 1957.
    3.Cooper, L. Y., “Convective Heat Transfer to Ceilings Above Enclosure Fires,” Nineteenth Symposium on Combustion. pp. 933-939, 1982.
    4.Cooper, L. Y., “A Buoyant Source in the Lower of Two, Homogeneous, Stably Stratified Layers,” Twentieth Symposium on Combustion, pp. 1567-1573, 1982.
    5.Alpert, R. L., “Fire Induced Turbulent Ceiling Jet,” Factory Mutual Research Corporation, Norwood MA. FMRC Serial Number 19722-2, May 1971.
    6.Alpert, R. L., “Calculations of Response Time of Ceiling Mounted Fire Detectors,” Fire Technology, Vol. 8, No. 3, pp. 181-195, August 1972.
    7.Heskestad, G., and Delichatsios, M. A., “The Initial Convective Flow in Fire,” Seventeenth Symposium on Combustion, The Combustion Institute, pp. 1113-1123, August 1978.
    8.Heskestad, G., and Delichatsios, M. A., “Environments of Fire Detectors – Phase I: Effect of Fire Size, Ceiling Height and Material,” Volume I – Measurements, NBS-GCR-77-86, National Institute of Standards and Technology, 1977.
    9.Heskestad, G., and Delichatsios, M. A., “Environments of Fire Detectors – Phase I: Effect of Fire Size, Ceiling Height and Material,” Volume II – Analysis, NBS-GCR-77-95, National Institute of Standards and Technology, 1977.
    10.Motevalli, V., and Ricciuti, C., “Characterization of the Confined Ceiling Jet in the Presence of an Upper Layer in Transient and Steady State Conditions,” NIST-GCR-92- 613. National Institute of Standards and Technology, August 1992.
    11.Evans, D. D., “Calculating Sprinkler Actuation Time in Compartments,” Fire Safety Journal, Vol. 9, No. 2, pp 147-155, 1985.
    12.Vettori, R. L., ”Effect of an Obstracted Ceiling on the Activation Time of a Residential Sprinkler,” National Institute of Standards and Technology, November, 1998.
    13.Vettori, R. L., ”Effect of Beamed Ceiling on the Activation Time of a Residential Sprinkler,” National Institute of Standards and Technology, December, 2003.
    14.Ruffino, P., and Dimarzo, M., “The Simulation of Fire Sprinklers Thermal Response on Presence of Water Droplets,” Fire Safety Journal, Vol. 39, pp. 721-736, 2004.
    15.Nam, S., “Actuation of sprinklers at high ceiling clearance facilities,” Fire Safety Journal, Vol. 39, pp.619-642, 2004.
    16.Stroup, D. W., “Analyzing Fire Safety Through Computer Modeling and Product Testing,” General Services Administration, Washington DC, Interscience Communications Limited. Fires and Materials. 2nd International Conference, Arlington, Virginia, pp. 7-12, September, 1993.
    17.Madrzykowski, D., and Vettori, R. L.; “Simulation of the Dynamics of the Fire at 3146 Cherry Road NE, Washington, DC, May 30, 1999,” National Institute of Standards and Technology, Gaithersburg, MD, NISTIR 6510, April 2000.
    18.McGrattan, K. B., “Fire Dynamics Simulator Version 4—Technical Reference Guide,” National Institute of Standards and Technology, March, 2006.
    19.Forney, G. P., McGrattan, K. B., “User’s Guide for Smokeview Version 4– A Tool for Visualizing Fire Dynamics Simulation Data,” National Institute of Standards and Technology, March, 2006.
    20.Xin, Y., Gore, J. P., McGrattan, K. B., Rehm, R. G., and Baum, H. R., “Fire Dynamics Simulation of a Turbulent Buoyant Flame Using a Mixture-Fraction-Based Combustion Model,” Combustion and Flame, Vol. 141, pp. 329–335, 2005.
    21.Xin, Y., Gore, J. P., McGrattan, K. B., Rehm, R. G., and Baum, H. R., “Large Eddy Simulation of Buoyant Turbulent Pool Fires,” Proc. Combust. Inst., Vol. 29, pp.259–266, 2002.
    22.Ma, T. G., and Quintiere, J. G., “Numerical Simulation of Axi-Symmetric Fire Plumes: Accuracy and Limitations,” Fire Safety Journal, Vol. 38, pp. 467-492, 2003.
    23.Vidmar, P., and Petelin, S.,” Analysis of the Effect of an External Fire on the Safety Operation of a Power Plant,” Fire Safety Journal, Vol. 41, pp. 486-490, 2006.
    24.Lee, S. R., and Ryou, H. S., “ Numerical Study on Smoke Movement in Longitudinal Ventilation Tunnel Fires for Different Aspect Ratio,” Building and Environment, Vol. 41, pp. 719-725, 2006.
    25.Ryder, N. L., Schemel, C. F., and Jankiewicz, S. P., “Near and Far Field Contamination Modeling in a Large Scale Enclosure: Fire Dynamics Simulator Comparisons with Measured Observations,” Journal of Hazardous Materials, Vol. 130, pp. 182–186, 2006.
    26.Kim, S. C., and Ryou, H. S., “An Experimental and Numerical Study on Fire Suppression Using a Water Mist in an Enclosure,” Building and Environment, Vol.38, pp. 1309-1316, 2003.
    27.Ryder, N. L., Sutula, J. A., Schemel, C. F., Hamer, A. J., and Brunt, V. V., “Consequence Modeling Using the Fire Dynamics Simulator,” Journal of Hazardous Materials, Vol. 115, pp. 149–154, 2004.
    28.Wen, J. X., Kang, K., Donchev, T., and Karwatzki, J. M., “Validation of FDS for the Prediction of Medium-Scale Pool Fires,” Fire Safety Journal, Vol. 42, pp. 127–138, 2007.
    29.Biswas, K., and Gore, J. P., “Fire Dynamics Simulations of Buoyant Diffusion Flames Stabilized on a Slot Burner,” Combustion and Flame, Vol.144 pp. 850–853, 2006.
    30.Peacock, R. D., Reneke, P. A., Bulowaski, R. W., and Babrauskas, V., “Defining Flashover for Fire Hazard Calculations,” Fire Safety Journal, Vol. 32, pp. 331, 1999.
    31.“自動撒水設備,” 各類場所消防安全設備設置標準, 第三編, 第一章, 第三節.
    32.ISO 9705,”Fire Test-Reaction to Fire Full-Scale Room Test for Surface Products,” International Organization for Standardization, Geneva, Switzerland, 1993.
    33.Parker, W., “Calculation of the Heat Release Rate by Oxygen Consumption for Various Applications,” NBSIR 81-2427, 1982.
    34.Janssens, M., “Measuring Rate of Heat Release by Oxygen Consumption,” Fire Technology, Vol. 27, pp. 234-249, 1991.
    35.Huggett, C., “Estimation of the Rate of Heat Release by Means of Oxygen Consumption Measurements,” Fire Materials, Vol. 4, pp. 61–65, 1980.
    36.McGrattan, K. B., “Fire Dynamics Simulator Version 4—User’s Guide,” National Institute of Standards and Technology, December, 2004.

    下載圖示 校內:2010-07-18公開
    校外:2010-07-18公開
    QR CODE