簡易檢索 / 詳目顯示

研究生: 吳亮諭
Wu, Liang-Yu
論文名稱: 圓柱及橢圓柱聲子晶體負折射聚焦與頻散之研究
The Foci and Dispersions of Negative Refraction Sonic Crystals with Circular and Elliptic Rods
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 95
中文關鍵詞: 聲子晶體負折射
外文關鍵詞: negative refraction, sonic crystal
相關次數: 點閱:65下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在早期聲子晶體的研究與探討主要是集中於能隙的應用與計算,如濾波器、波導或共振腔的設計。而近年來研究發現在其傳導區擁有異常之頻散現象,發現聲子晶體具有負折射特性,使得該方面之研究更成為最近學術界的熱門話題。
    本文以平面波展開法求得二維聲子晶體的等頻圖,並利用等頻圖判斷出會產生負折射的入射角度與頻率,預測其負折射角度,分析其頻散現象。再利用有限元素法模擬負折射現象。
    為了主動調變聲波的傳遞方向,我們用溫度的變化來改變背景的密度與波速,進而控制聲子晶體的折射方向,用以控制聲波聚焦的距離,並可以藉此設計出以溫度調變的可調式平面聲波透鏡。除此之外,我們將聲子晶體之填充物以橢圓柱取代圓柱後,橢圓柱之幾何非等向性明顯使其等頻圖產生改變,使得垂直入射的聲波即可發生折射,分析橢圓柱不同的旋轉角,來獲得不同的折射角度,與不同方向的晶格排列之頻散現象,進而控制聲波傳遞的方向,可利用橢圓柱聲子晶體的概念可設計出可調式聲波導、聲波開關與可調式分波器,且經過適當旋轉角配置之橢圓柱聲子晶體,也可藉此設計出使平面入射的聲波聚焦的聲波聚焦透鏡。最後,以實驗來證明聲子晶體的負折射現象,並與有限元素法之模擬結果做比對。這些聲子晶體聲波元件可應用在未來的生醫科技與機械領域上。

    Dispersion characteristics of negative refraction sonic crystals are investigated, of which the anomalous refractive properties (especially negative refraction) have become hot topics of scientific research over the past few years. Scope of the investigation is not limited to the band gap region. The plane wave expansion method is used to obtain the equifrequency surface. The anomalous refractive properties of sonic crystals are analyzed and predicted by using the equifrequency surface. Then we employ the finite element method to simulate the acoustic wave propagation within sonic crystals, and the obtained refractive direction is compared with that predicted by the equifrequency surface.
    The temperature tunable dispersion characteristics of sonic crystals are observed. By controlling the temperature, we can tune the refractive direction and adjust the location of focus, and then the tunable acoustic superlenses can be designed. The dispersion characteristics of the two-dimension sonic crystals of elliptic rods are also studies. Due to the large anisotropy of elliptic rods, we can rotate the elliptic rods to obtain different structure factors. The anisotropic property can then be used to tune the refraction direction and the dispersion characteristics. The obtained results can be applied to develop various sonic crystal devices, such as tunable acoustic waveguides, acoustic switches and tunable acoustic splitters. In addition, we design an acoustic focusing superlens made of a two-dimension elliptic rod sonic crystal that will cause an incident plane wave to be converted to a point source. Finally, we work on the negative refraction phenomena experiments of sonic crystals and compare the results of experiments with simulation results of finite element method. The novel sonic crystal devices may provide applications in biomedical and mechanical technology

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號 XI 第一章 緒論 1 1-1 前言 1 1-2 聲子晶體負折射現象簡介 1 1-3 文獻回顧 2 1-3-1 週期性結構 2 1-3-2 二維聲子晶體 2 1-3-3 聲子晶體負折射現象 3 1-4 本文架構 4 第二章 數值方法 6 2-1 前言 6 2-2 倒晶格(Reciprocal lattice) 6 2-3 布拉克定理(Bloch’s theorem) 7 2-4 平面波展開法 7 2-5 有限元素法 10 2-5-1 聲學模組之有限元素法推導[34, 35] 11 2-5-2 邊界條件(boundary condition) [34] 13 2-5-3 結構模組與聲學模組之耦合[34] 14 第三章 圓柱聲子晶體的負折射現象 18 3-1 前言 18 3-2 等頻圖與折射角之判斷 18 3-3 聲子晶體折射聲波種類 18 3-4 聲子晶體之負折射現象分析與模擬 19 3-4-1 改變入射聲波頻率 20 3-4-2 改變入射角 22 3-4-3 正方晶格與三角晶格之負折射現象比較 23 3-5 聲子晶體之聚焦現象 25 3-5-1 聚焦現象 25 3-5-2 溫度效應 26 第四章 橢圓柱聲子晶體折射現象之調變 43 4-1 前言 43 4-2 橢圓柱聲子晶體 43 4-2-1 正方晶格橢圓柱聲子晶體 44 4-2-2 三角晶格橢圓柱聲子晶體 46 4-3 橢圓柱聲子晶體之應用 47 4-3-1 分波器 47 4-3-2 平面波聚焦 48 4-4 溫度效應 49 第五章 聲子晶體之負折射實驗 67 5-1 前言 67 5-2 有限元素法模擬 67 5-2-1 三角晶格聲子晶體聲波折射模擬 67 5-2-2 正方晶格聲子晶體聲波折射模擬 69 5-3 聲子晶體之折射實驗 69 5-3-1 實驗架構 70 5-3-2 三角晶格聲子晶體聲波折射實驗 71 5-3-3 正方晶格聲子晶體聲波折射實驗 72 5-4 實驗與模擬之誤差討論 73 第六章 綜合結論與未來展望 89 6-1 綜合結論 89 6-2 未來展望 90 參考文獻 91 自述 95

    [1] L.Brillouin, Wave propagation in periodic structures 2nd ed. Dover, New York (1953)
    [2] M. Ruzzene and A. Baz, ‘Control of wave propagation in periodic composite rods using shape memory inserts’, Journal of Vibration and Acoustics Vol. 122, No. 2, 151 (2000).
    [3] M. Ruzzene and A. Baz, ‘Attenuation and localization of wave propagation in periodic rods using shape memory inserts’, Smart Materials and Structures Vol. 9, No. 6 , 805 (2000).
    [4] S. Solaroli, Z. Gu, A. Baz, and M. Ruzzene, ‘Wave propagation in periodic stiffened shells: spectral finite element modeling and experiments’, Journal of Vibration and Control Vol. 9, No.9, 1057 (2003).
    [5] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B.Djafari-Rouhani, ‘Acoustic band structure of periodic elastic composites’, Phys. Rev. Lett. Vol. 71, No. 13, 2022 (1993)
    [6] M. S. Kushwaha, P. Halevi, ‘Band-gap engineering in periodic elastic composites’, Appl. Phys. Lett. Vol. 64, No.9, 1805 (1994)
    [7] M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski, and B.Djafari-Rouhani, ‘Theory of acoustic band structure of periodic elastic composites’, Phys. Rev. B. Vol. 49, No. 4, 2313 (1994)
    [8] M. S. Kushwaha, ‘Classical band structure of periodic elastic composites’, Internationa1 Journal of Modern Physics B Vol. 10, No. 9, 977 (1996)
    [9] M. S. Kushwaha, P. Halevi, ‘Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders’, Appl. Phys. Lett. Vol.69, No. 1, 31 (1996)
    [10] M. S. Kushwaha, ‘Stop-bands for periodic metallic rods: Sculptures that can filter the noise’, Appl. Phys. Lett. Vol. 70, No. 24, 3218 (1997)
    [11] M. S. Kushwaha, and B. Djafrari-Rouhani, ‘Giant sonic stop band in two-dimensional periodic system of fluids’, Journal of Applied Physics Vol. 84, No. 9, 4677 (1998)
    [12] C. Goffaux and J. P. Vigneron, ‘Theoretical study of a tunable phononic band gap system’, Phys. Rev. B, Vol. 64, No. 7, 075118 (2001)
    [13] J. O. Vasseur, P. A. Deymier, A. Khelif, B. Djafrari-Rouhani, A. Akjouj, L. Dobrzynski, N. Fettouhi, and J. Zemmouri, ‘Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range: A theoretical and experimental study’, Phys. Rev. E Vol.65, No. 5, 056608 (2002)
    [14] A. Khelif, P. A. Deymier, B. Djafari-Rouhani, J. O. Vasseur, and L. Dobrzynski, ‘Two-dimensional phononic crystal with tunable narrow pass band: Application to a waveguide with selective frequency’, J. Appl. Phys. Vol. 94, No.3, 1308 (2003)
    [15] Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, A. Khelif, and P. A. Deymier, ‘Tunable filtering and demultiplexing in phononic crystals with hollow cylinders’, Phys. Rev. E Vol. 69, No.4, 046608 (2004)
    [16] W. Kuang, Z. Hou, and Y. Liu, ‘The effects of shapes and symmetries of scatterers on the phononic band gap in 2D phononic crystals’, Phys. Let. A Vol. 332, No. 6, 481 (2004)
    [17] X. Zhang, Y. Liu, F. Wu, and Z. Liu, ‘Large two-dimensional band gaps in three-component phononic crystals’, Phys. Let. A Vol. 317, No. 2 144 (2003)
    [18] M. Kafesaki, and E. N. Economou, ‘Multiple-scattering theory for three-dimensional periodic acoustic composites’, Phys. Rev. B Vol. 60, No. 17, 11993(1999)
    [19] Z. Hou, F. Wu, and Y. Liu, ‘Phononic crystals containing piezoelectric material’, Solid State Communications Vol. 130 , 745 (2004)
    [20] T. T. Wu, Z. G. Huang, and S. Lin, ‘Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy’, Phys. Rev. B Vol. 69, No. 9, 094301 (2004)
    [21] V. G. Veselago, ‘The electrodynamics of substances with simultaneously negative values of ε and μ’, Sov. Phys. Usp. Vol. 10, 509 (1968)
    [22] D. R. Smith, Willie J. Padilla, D. C. Vier, S.C. Nemat-Nasser, and S. Schultz, ‘Composite medium with simultaneously negative permeability and permittivity’, Phys. Rev. Lett. Vol. 84, No.18, 4184 (2000)
    [23] J. B. Pendry, ‘Negative Refraction Makes a Perfect Lens’, Phys Rev. Lett. Vol. 85, No. 18, 3966 (2000)
    [24] M .Notomi, ‘Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap’, Phys. Rev. B Vol. 62, No. 16, 10696 (2000)
    [25] X. Zhang, and Z. Liu, ‘Negative refraction of acoustic waves in two-dimensional phononic crystals’, Appl. Phys. Lett. Vol. 85, No. 2, 341 (2004)
    [26] M. Torres, and F. R. Montero de Espinosa, ‘Ultrasonic band gaps and negative refraction’, Ultrasonics Vol. 42, No. 42, 787 (2004)
    [27] K. Imamura, and S. Tamura, ‘Negative refraction of phonons and acoustic lensing effect of crystalline slab’, Phys. Rev. B Vol. 70, No. 17, 174308 (2004)
    [28] M. Ke, Z. Liu, C. Qiu, W. Wang, J. Shi, W. Wen and P. Sheng, ‘Negative-refraction imaging with two-dimensional phononic crystals’, Phys. Rev. B Vol. 72, No. 6, 064306 (2005)
    [29] C. Qiu, X Zhang, and Z. Liu, ‘Far-field imaging of acoustic waves by a two-dimensional sonic crystal’, Phys. Rev. B Vol. 71, No.5, 054302 (2005)
    [30] J. Li, Z. Liu, and C. Qiu, ‘Negative refraction imaging of acoustic waves by a two-dimensional three-component phononic crystal’, Phys. Rev. B Vol. 73, No. 5, 054302 (2006)
    [31] L. Feng, X. P. Liu, Y. B. Chen, Z. P. Huang, Y. W. Mao, Y. F. Chen, J. Zi, and Y. Y. Zhu, ‘Negative refraction of acoustic waves in two dimensional sonic crystals’, Phys. Rev. B Vol. 72, No. 3, 033108 (2005)
    [32] L. Feng, X. P. Liu, M. H. Lu, Y. B. Chen, Y. F. Chen, Y. W. Mao, J. Zi, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, ‘Acoustic backward-wave negative refractions in the second band of a sonic crystal’, Phys. Rev. Lett. Vol. 96, No. 1, 014301 (2006)
    [33] L. Feng, X. P. Liu, M. H. Lu, Y. B. Chen, Y. F. Chen, Y. W. Mao, J. Zi, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, ‘Refraction control of acoustic waves in a square-rod-constructed tunable sonic crystal’, Phys. Rev. B Vol. 73, No.19, 193101 (2006)
    [34] COMSOL Multiphysics User’s Guide and Modeling Guide
    [35] J. N. Reddy, An introduction to the finite element method 3rd ed. McGraw-Hill, New York (2006)
    [36] C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, ‘All-angle negative refraction without negative effective index’, Phys. Rev. B Vol.65, No. 6,201104 (2002)
    [37] N. Susa, ‘Large absolute and polarization-independent photonic band gaps for various lattice structures and rod shapes’, Journal of Applied Physics Vol. 91, No. 6, 3501 (2002)

    下載圖示 校內:2008-07-18公開
    校外:2008-07-18公開
    QR CODE