簡易檢索 / 詳目顯示

研究生: 吳盈清
Wu, Yng-Ching
論文名稱: 利用分子動力學研究類鴉片配體的結構與活性
Structure-Activity Relationships of Opioid Ligands:A Molecular Dynamics Study
指導教授: 黃吉川
Hwang, Chi-Chuan
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 179
中文關鍵詞: 分子動力學AM1計算結構與活性關係藥效基團
外文關鍵詞: molecular dynamics, AM1 calculation, structure-activity relationships, pharmacophore
相關次數: 點閱:88下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要係以分子動力學模擬方法,並搭配量子化學半經驗方法中的AM1計算,來研究類鴉片系統中的配體結構與活性關係,藉以探討其與受體間的結合交互作用機制。對於嚴重的疼痛而言,嗎啡是最廣泛使用的止痛劑,但其在使用過程中會伴隨產生一些副作用。且自從發現人體內存在符合類鴉片受體的內源性物質─「腦啡」後,開發新鎮痛藥物一直以朝向尋找成癮性小且副作用少為努力的目標。由於人體中存在的類鴉片系統,除了具有止痛、鎮靜與欣快的作用外,還會影響情緒、記憶與認知等心理或生理層面。而這些作用便是起源於類鴉片配體與受體結合後所導致的一連串生化調控機制。由於受體本身是一個巨大的膜蛋白,要直接研究胜分子與受體間的交互作用是非常困難的。因此,直至目前為止,對於藥物設計與間接推測受體的選擇性來說,胜分子的結構研究至今仍是一個相當重要的課題。因此,本論文首先於第二章對類鴉片受體與配體的背景做一介紹,接著,第三章至第五章則分別介紹δ、κ、μ三種類鴉片配體的結構與活性研究。希冀藉由這三種不同屬性之類鴉片配體的藥效基團研究,使我們更能了解及釐清整個類鴉片系統中配體與受體結合時的活性關係。綜合本論文之研究內容,我們分別定義出κ-以及μ-藥效基團模型,並與Shenderovich等人所提出的δ藥效基團模型做一比較。最後,希望透過研究三種不同屬性的類鴉片配體之結構穩定特性與藥理活性,能進而做為爾後在藥物設計與醫療上的參考。

    The dissertation directs on studying the structure-activity relationships of the various opioid ligands using molecular dynamics simulations and AM1 calculations in order to understand the mechanisms of the active binding interactions between opioid receptors and ligands. It is clear known that morphine is widely used in medicine as strong analgesics for relief of severe pain. Yet, it may cause addiction and withdrawal symptoms as well as other harmful effects. Therefore, since the endogenous opioid peptide of the enkephalin was discovered corresponding to the opioid receptor, the efforts of developing the new analgesic drugs have been toward minimizing a risk of addiction and reducing adverse side effects. Due to the existence of the opioid system in humans, in terms of its functions not only possess analgesia, sedation, and euphoria, but influence of the psychological and physiological levels involve the emotion, memory, and recognition. All of the above-mentioned functions result from a series of biochemical regulations after the binding interactions between opioid receptors and their ligands. Because opioid receptors are large membrane proteins, difficult to study by standard structural techniques. Thus, conformational studies of opioid peptides are still important for drug design and also for indirect receptor mapping. We first introduce a number of backgrounds for opioid receptors and opioid ligands. Subsequently, the structure-activity relationships of δ-, κ- and μ-selective opioid ligands are studied. We hope such investigations can let us more understand the structure-activity relationships of opioid system. In this dissertation, we have well defined the pharmacophore model of κ- and μ-opioid receptor, respectively. These significant results have compared to δ pharmacophore model. Finally, the results of this dissertation will provide some valuable information for drug design and clinical therapy.

    中文摘要 I 英文摘要 II 誌謝 III 圖目錄 VII 表目錄 XII 符號說明 XIV 第一章、緒論 1-1、 研究動機與目的 1 1-2、 研究背景 6 1-3、 本文架構 12 第二章、類鴉片受體與配體之介紹 14 2-1、 類鴉片受體的結構與功能 15 2-2、 類鴉片配體 23 2-2-1、 類鴉片配體的分類 23 2-2-2、 類鴉片活性的定義 32 2-2-3、 類鴉片配體的活性構形 38 第三章、δ類鴉片配體的結構與活性研究 44 3-1、 反平行雙股甲硫胺酸腦啡 45 3-2、 白胺酸腦啡類似物 63 第四章、κ類鴉片配體的結構與活性研究 82 4-1、 αS1-酪啡 83 第五章、μ類鴉片配體的結構與活性研究 99 5-1、 第一型與第二型內嗎啡 100 第六章 結論與未來展望 6-1、 結論 126 6-2、 類鴉片系統未來研究方向 129 參考文獻 132 附錄A:胜與蛋白質結構 A-1、 胺基酸 163 A-2、 一級結構 166 A-3、 二級結構 169 A-3-1、α螺旋 170 A-3-2、β股 171 A-3-3、轉折 172 A-4、三級結構 175 A-5、四級結構 176 論文著作 177

    [1] Serturner, F.W., Trommsdorff's Journal der Pharmazie fur Aerzte, Apotheker
    und Chemisten., 13, 229235, 1805.
    [2] Gulland, J.M. and Robinson, R., The morphine group: Part I. A discussion of
    the constitutional problem. Journal of the Chemical Society, 123, 980998,
    1923.
    [3] White, J.M. and Irvine, R.J., Mechanisms of fatal opioid overdose. Addiction,
    94, 961972, 1999.
    [4] Aparasu, R., McCoy, R.A., Weber, C., Mair, D. and Parasuraman, T.V.,
    Opioid-induced emesis among hospitalized nonsurgical patients: Effect on
    pain and quality of life. Journal of Pain Symptom Management, 18, 280288,
    1999.
    [5] Mancini, I. and Bruera, E., Constipation in advanced cancer patients.
    Supportive Care in Cancer, 6, 356364, 1998.
    [6] Chakrabarti, S., Wang, L., Tang, W.J. and Gintzler, A.R., Chronic morphine
    augments adenylyl cyclase phosphorylation: Relevance to altered signaling
    during tolerance/dependence. Molecular of Pharmacology, 54, 949953, 1998.
    [7] Hughes, J., Smith, T.W., Kosterlitz, H.W., Fothergill, L.A., Moran, B.A. and
    Morris, H.R., Identification of two related pentapeptides from the brain with
    potent opiate agonist activity. Nature, 258, 577579, 1975.
    [8] Beckman, M., The mice that don't miss mom: Love and the μ-opioid receptor.
    Science, 304, 18881889, 2004.
    [9] Hruby, V. and Gehrig, C., Recent developments in the design of receptor
    specific opioid peptides. Medicinal Research Reviews, 9, 343401, 1989.[10] Hruby, V.J. and Agnes, R.S., Conformation-activity relationships of opioid
    peptides with selective activities at opioid receptors. Biopolymers, 51, 391410,
    1999.
    [11] Shenderovich, M.D., Liao, S., Qian, X. and Hruby, V.J., A three-dimensional
    model of the δ-opioid pharmacophore: comparative molecular modeling of
    peptide and nonpeptide ligands. Biopolymers, 53, 565580, 2000.
    [12] Li, T., Fujita, Y., Shiotani, K., Miyazaki, A., Tsuda, Y., Ambo, A., Sasaki, Y.,
    Jinsmaa, Y., Marczak, E., Bryant, S.D., Salvadori, S., Lazarus, L.H., Okada, Y.,
    Potent Dmt-Tic pharmacophoric δ- and μ-opioid receptor antagonists. Journal
    of Medicinal Chemistry, 48, 80358044, 2005.
    [13] Bernard, D., Coop, A. and MacKerell Jr, A.D., Conformationally sampled
    pharmacophore for peptidic delta opioid ligands. Journal of Medicinal
    Chemistry, 48, 77737780, 2005.
    [14] an den Eynde, I., Laus, G., Schiller, P.W., Kosson, P., Chung, N.N., Lipkowski,
    A.W. and Tourwe, D., A new structural motif for mu-opioid antagonists.
    Journal of Medicinal Chemistry, 48, 36443648, 2005.
    [15] Munro, T.A., Rizzacasa, M.A., Roth, B.L., Toth, B.A. and Yan, F., Studies
    toward the pharmacophore of salvinorin A: A potent kappa opioid receptor
    agonist. Journal of Medicinal Chemistry, 48, 345348, 2005.
    [16] Neumeyer, J.L., Zhang, A., Xiong, W., Gu, X.H., Hilbert, J.E., Knapp, B.I.,
    Negus, S.S., Mello, N.K., Bidlack, J.M., Design and synthesis of novel dimeric
    morphinan ligands for κ and μ opioid receptors. Journal of Medicinal
    Chemistry, 46, 51625170, 2003.
    [17] Bernard, D., Coop, A. and MacKerell, AD Jr., 2D conformationally sampled
    pharmacophore: A ligand-based pharmacophore to differentiate delta opioidagonists from antagonists. Journal of the American Chemical Socicty, 125,
    31013107, 2003.
    [18] Deschamps, J.R., Flippen-Anderson, J.L., George, C., X-ray studies on ligands.
    Biopolymers, 66, 287293, 2002.
    [19] Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., Journal of the
    American Chemical Society, 107, 3902, 1985.
    [20] Lim, A.T., Lolait, S., Barlow, J.W., Wai, S.O., Zois, I., Toh, B.H. and Funder,
    J.W., Immuno-reactive β-endorphin in sheep ovary. Nature, 303, 709-711,
    1983.
    [21] Saviano, G.., Crescenzi, O., Picone, D., Temussi, P.A. and Tancredi, T.,
    Solution structure of human β-endorphin in helicogenic solvents: A NMR
    study. Journal of Peptide Science, 5, 410422, 1999.
    [22] Chavkin, C., James, I.F. and Goldstein, A., Dynorphin Is a specific endogenous
    ligand of the opioid receptor. Science, 215, 413415, 1982.
    [23] Spadaccini, R., Crescenzi, O., Picone, D., Tancredi, T. And Temussi, P.A.,
    Solution structure of dynorphin A (1–17): A NMR study in a cryoprotective
    mixture at 278 K. Journal of Peptide Science, 5, 306312, 1998.
    [24] Zadina, J.E., Hackler, L., Ge, L.J. and Kastin, A.J., A potent and selective
    endogenous agonist for the μ-opiate receptor. Nature, 386, 499502, 1997.
    [25] Schwyzer, R., Prediction of potency and receptor selectivity of regulatory
    peptides: The membrane compartment concept. Peptides, 86, 723, 1987.
    [26] Sagan, S., Amiche, M., Delfour, A., Camus, A., Mor, A. and Nicolas, P.,
    Differential contribution of C-terminal regions of dermorphin and
    dermenkephalin to opioid-sites selection and binding potency. Biochemical
    and Biophysical Research Communications, 163, 726732, 1989.[27] Loew, G.H., Molecular modeling of opioid analgesics. Modern Drug
    Discovery, 2, 2427, 28, 30, 1999.
    [28] Huang, P., Kim, S. and Loew, G., Development of a common 3D
    pharmacophore for δ-opioid recognition from peptides and non-peptides using
    a novel computer program. Journal of Computer Aided Molecular Design, 11,
    212218, 1997.
    [29] Keys, C., Payne, P., Amsterdam, P., Toll, L. and Loew, G.H., Conformational
    determinants of high affinity δ receptor binding of opioid peptides. Molecular
    Pharmacology, 33, 528536, 1988.
    [30] Mosberg, H.I., Complementarity of δ opioid ligand pharmacophore and
    receptor models. Biopolymers, 51 426439, 1999.
    [31] Portoghese, P.S., Moe, S.T. and Takemori, A.E., Selective δ1 opioid receptor
    agonist derived from oxymorphone. Evidence for separate recognition sites for
    δ1 opioid receptor agonists and antagonists. Journal of Medicinal Chemistry,
    36, 25722574, 1993.
    [32] Wild, K.D., Fang, L, McNutt, R.W., Chang, K.J., Toth, G., Borsodi, A.,
    Yamamura, H.I. and Porreca, F., Binding of BW 373U86, a non-peptide δ
    opioid receptor agonist, is not regulated by guanine nucleotides and sodium.
    European Journal of Pharmacology, 246, 289292 1993.
    [33] Schiller, P.W., Nguyen, T.M., Weltrowska, G., Wilkes, B.C., Marsden, B.J.,
    Lemieux, C. and Chung, N.N., Differential stereochemical requirements of μ
    versus δ opioid receptors for ligand binding and signal transduction:
    Development of a new class of potent and highly delta-selective peptide
    antagonists. Proceeding of the National Academy of Sciences of the United
    States of America, 89, 1187111875, 1992.[34] Mosberg, H.I. and Fowler, C.B., Development and validation of opioid
    ligand-receptor interaction models: the structural basis of μ vs δ selectivity.
    Journal of Peptide Research, 60, 329335, 2002.
    [35] Alder, B.J., Wainwright, T.E., Phase transition for a hard spheres ystem.
    Journal of Chemical Physics, 27, 12081209, 1957.
    [36] Rahman, A., Correlations in the motion of atoms in liquid argon. Physical
    Review, 136, A405, 1964.
    [37] McCammon, J.A., Molecular dynamics study of the bovine pancreatic trypsin
    inhibitor. In "Report of the 1976 Workshop, Models for Protein Dynamics,"
    Berendsen, H.J.C. Ed., Centre Europeen de Calcul Atomique et Moleculaire,
    Universite de Paris IX, France, 137152, 1977.
    [38] Kremer, K., Computer simulations for macromolecular science.
    Macromolecular Chemistry and Physics, 204, 257264, 2003.
    [39] Rickman, J.M. and LeSar, R., Free-energy calculations in materials research,
    Annual Review of Materials Research, 32, 195217, 2002.
    [40] Sagui, C. and Darden, T.A., Molecular dynamics simulations of biomolecules:
    Long-range electrostatic effects. Annual Review of Biophysics and
    Biomolecular Structure, 28, 155179, 1999.
    [41] Cheatham III, T.E. and Kollman, P.A., Molecular dynamics simulation of
    nucleic acids. Annual Review of Physical Chemistry, 51, 435471, 2000.
    [42] Wang, W., Donini, O., Reyes, C.M. and Kollman, P.A., Biomolecular
    simulations: Recent developments in force fields, simulations of enzyme
    catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent
    interactions. Annual Review of Biophysics and Biomolecular Structure, 30,
    211243, 2001.[43] http://apps.isiknowledge.com/UA_GeneralSearch_input.do?product=UA&sear
    ch_mode=GeneralSearch&SID=4AEEfj88B3LiNe9jNHH&preferencesSaved=
    (ISI Web of Knowledge 入口網站)
    [44] Rognan, D., Molecular dynamics simulations: A tool for drug design.
    Perspectives in Drug Discovery and Design, 9-11, 181209, 1998.
    [45] Clark, J.A., Liu, L., Price, M., Hersh, B., Edelson, M. and Pasternak, G.W., κ
    opiate receptor multiplicity: Evidence for two U50,488-sensitive κ1 subtypes
    and a novel κ3 subtype. The Journal of pharmacology and experimental
    therapeutics, 251, 461468, 1989.
    [46] Harrison, L.M., Kastin, A.J. and Zadina, J.E., Opiate tolerance and dependence:
    Receptors, G-proteins, and antiopiates. Peptides, 19, 16031630, 1998.
    [47] Kieffer, B.L., Opioids: First lessons from knockout mice. Trends in
    Pharmacological Sciences, 20, 1926, 1999.
    [48] Evans, C.J., Jr Keith, D.E., Morrison, H., Magendzo, K. and Edwards, R.H.,
    Cloning of a δ opioid receptor by functional expression. Science, 258,
    19521955, 1992.
    [49] Kieffer, B.L., Befort, K., Gaveriaux-Ruff, C. and Hirth, C.G., The δ-opioid
    receptor: Isolation of a cDNA by expression cloning and pharmacological
    characterization. Proceeding of the National Academy of Sciences of the
    United States of America, 89, 1204812052, 1992.
    [50] Chen, Y., Mestek, A., Liu, J., Hurley, J.A. and Yu, L., Molecular cloning and
    functional expression of a μ-opioid receptor from rat brain. Molecular
    pharmacology, 44, 812, 1993.
    [51] Minami, M., Toya, T., Katao, Y., Maekawa, K., Nakamura, S., Onogi, T.,
    Kaneko, S. and Satoh, M., Cloning and expression of a cDNA for the ratκ-opioid receptor. FEBS letters, 329, 291295, 1993.
    [52] Solomon H.S. and Gavril W.P., Historical review: Opioid receptors, Trends in
    Pharmacological Sciences, 24, 198205, 2003.
    [53] Lasagna, L. and Beecher, H.K., The analgesic effectiveness of nalorphine and
    nalorphine-morphine combinations in man. The Journal of pharmacology and
    experimental therapeutics, 112, 356363, 1954.
    [54] Martin, W.R., Opioid antagonists. Pharmacological Reviews, 19, 463-521,
    1967.
    [55] Cuatrecasas, P., Desbuquois, B. and Krug, F., Insulin-receptor interactions in
    liver cell membranes. Biochemical and Biophysical Research Communications,
    44, 333339, 1971.
    [56] Fukuda, K., Kato, S., Mori, K., Nishi, M. and Takeshima, H., Primary
    structures and expression from cDNAs of rat opioid receptor δ- and μ-subtypes.
    FEBS letters, 327, 311314, 1993.
    [57] Knapp, R.J., Malatynska, E., Fang, L., Li, X., Babin, E., Nguyen, M., Santoro,
    G., Varga. E.V., Hruby, V.J. and Roeske, W.R., Identification of a human δ
    opioid receptor: Cloning and expression. Life Sciences, 54, PL463469, 1994.
    [58] Stevens, C., Opioid research in amphibians: A unique perspective on
    mechanisms of opioid analgesia and the evolution of opioid receptors. Reviews
    in Analgesia, 7, 6982, 2003.
    [59] Vanderah, T., Takemori, A.E., Sultana, M., Portoghese, P.S., Mosberg, H.I.,
    Hruby, V.J., Haaseth, R.C., Matsunaga, T.O. and Porreca, F., Interaction of
    [D-Pen2,D-Pen5]enkephalin and [D-Ala2,Glu4]deltorphin with δ-opioid
    receptor subtypes in vivo. European Journal of Pharmacology, 252, 133137,
    1994.[60] Portoghese, P.S., Sultana, M., Nagase, H. and Takemori, A.E., A highly
    selective δ1-opioid receptor antagonist: 7-benzylidenenaltrexone. European
    Journal of Pharmacology, 218, 195196, 1992.
    [61] Jiang, Q., Takemori, A.E., Sultana, M., Portoghese, P.S., Bowen, W.D.,
    Mosberg, H.I. and Porreca, F., Differential antagonism of opioid δ
    antinociception by [D-Ala2,Leu5,Cys6]enkephalin and naltrindole
    5'-isothiocyanate: Evidence for δ receptor subtypes. Journal of Pharmacology
    and Experimental Therapeutics, 257, 10691075, 1991.
    [62] Nishi, M., Takeshima, H., Fukuda, K., Kato, S. and Mori, K., Tumors and
    aging: the influence of age-associated immune changes upon tumor growth
    and spread. FEBS Letters, 330, 7780, 1993.
    [63] Chen, Y., Mestek, A., Liu, J. and Yu, L., Molecular cloning of a rat κ opioid
    receptor reveals sequence similarities to the μ and δ opioid receptors.
    Biochemical Journal, 295, 625628, 1993.
    [64] Meng, F., Xie, G.X., Thompson, R.C., Mansour, A., Goldstein, A., Watson, S.J.,
    and Akil, H., Cloning and pharmacological characterization of a rat κ opioid
    receptor. Proceeding of the National Academy of Sciences of the United States
    of America, 90, 99549958, 1993.
    [65] Li, S., Zhu, J., Chen, C., Chen, Y.W., Deriel, J.K., Ashby, B., and Liu-Chen,
    L.Y., Molecular cloning and expression of a rat κ opioid receptor. Biochemical
    Journal, 295, 629633, 1993.
    [66] Yasuda, K., Raynor, K., Kong, H., Breder, C.D., Takeda, J., Reisine, T. and
    Bell, G.I., Cloning and functional comparison of and opioid receptors from
    mouse brain. Proceeding of the National Academy of Sciences of the United
    States of America, 90, 67366740, 1993.[67] Nishi, M., Takeshima, H., Mori, M., Nakagawara, K. and Takeuchi, T.,
    Structure and chromosomal mapping of genes for the mouse kappa-opioid
    receptor and an opioid receptor homologue. Biochemical and biophysical
    research communications, 205, 13531357, 1994.
    [68] Mansson, E., Bare, L. and Yang, D., Isolation of a human κ opioid receptor
    cDNA from placenta. Biochemical and biophysical research communications,
    202, 14311437, 1994.
    [69] Simonin, F., Gaveriaux-Ruff, C., Befort, K., Matthes, H., Lannes, B.,
    Micheletti, G., Mattei, M., Charron, G., Bloch, B., and Kieffer, B., κ-opioid
    receptor in humans: cDNA and genomic cloning, chromosomal assignment,
    functional expression, pharmacology, and expression pattern in the central
    nervous system. Proceeding of the National Academy of Sciences of the United
    States of America, 92, 70067010, 1995.
    [70] Zhu, J., Chen, C., Xue, J.C., Kunapuli, S., DeRiel, J.K. and Liu-Chen, L.Y.,
    Cloning of a human κ opioid receptor from the brain.Life Sciences, 56,
    PL201207, 1995.
    [71] Xie, G.X., Meng, F., Mansour, A., Thompson, R.C., Hoversten, M.T.,
    Goldstein, A., Watson, S.J., and Akil, H., Primary structure and functional
    expression of a Guinea pig opioid (dynorphin) receptor. Proceeding of the
    National Academy of Sciences of the United States of America, 91, 37793783,
    1994.
    [72] Akil, H. and Watson, S.J., Cloning of kappa opioid receptors: functional
    significance and future directions. Progress in Brain Research, 100, 8186,
    1994.
    [73] Cadet, P., Mantione, K.J. and Stefano, G.B., Molecular identification andfunctional expression of μ3, a novel alternatively spliced variantof the human
    μ opiate receptor gene. The Journal of Immunology, 170, 51185123, 2003.
    [74] Stefano, G.B., Endogenous morphine: A role in wellness medicine. Medical
    science monitor, 10, ED5, 2004.
    [75] Wang, J.B., Imai, Y., Eppler, C.M., Gregor, P., Spivak, C.E. and Uhl, G.R., μ
    opiate receptor: cDNA cloning and expression. Proceeding of the National
    Academy of Sciences of the United States of America, 90, 1023010234, 1993.
    [76] Thompson, R.C., Mansour, A., Akil, H. and Watson, S.J., Cloning and
    pharmacological characterization of a rat μ opioid receptor. Neuron, 11,
    903913, 1993.
    [77] Minami, M., Onogi, T., Toya, T., Katao, Y., Hosoi, Y., Maekawa, K.,
    Katsumatam S., Yabuuchi, K. and Satoh, M., Molecular cloning and in situ
    hybridization histochemistry for rat μ-opioid receptor. Neuroscience research,
    18, 315322, 1994.
    [78] Bunzow, J.R., Zhang, G., Bouvier, C., Saez, C., Ronnekleiv, O.K., Kelly, M.J.
    and Grandy, D.K., Characterization and distribution of a cloned rat mu-opioid
    receptor. Journal of neurochemistry, 64, 1424, 1995.
    [79] Min, B.H., Augustin, L.B., Felsheim, R.F., Fuchs, J.A. and Loh, H.H.,
    Genomic structure and analysis of promoter sequence of a mouse μ opioid
    receptor gene. Proceeding of the National Academy of Sciences of the United
    States of America, 91, 90819085, 1994.
    [80] Wang, J.B., Johnson, P.S., Persico, A.M., Hawkins, A.L., Griffin, C.A. and Uhl,
    G.R., Human μ opiate receptor. cDNA and genomic clones, pharmacologic
    characterization and chromosomal assignment. FEBS Letters, 338, 217222,
    1994.[81] Pampusch, M.S., Osinski, M.A., Brown, D.R. and Murtaugh, M.P., The
    porcine μ opioid receptor : Molecular cloning and mRNA distribution in
    lymphoid tissues. Journal of neuroimmunology, 90, 192198, 1998.
    [82] Onoprishvili, I., Andria, M.L., Vilim, F.S., Hiller, J.M. and Simon, E.J., The
    bovine μ-opioid receptor: Cloning of cDNA and pharmacological
    characterization of the receptor expressed in mammalian cells. Molecular
    Brain Research, 73, 129137, 1999.
    [83] Darlison, M.G., Greten, F.R., Harvey, R.J., Kreienkamp, H.J., Stuhmer, T.,
    Zwiers, H., Lederis, K., and Richter, D., Opioid receptors from a lower
    vertebrate (Catostomus commersoni): Sequence, pharmacology, coupling to a
    G-protein-gated inward-rectifying potassium channel (GIRK1), and evolution.
    Proceeding of the National Academy of Sciences of the United States of
    America, 94, 82148219, 1997.
    [84] Barrallo, A., Gonzalez-Sarmiento, R., Alvar, F. and Rodriguez, R.E., ZFOR2, a
    new opioid receptor-like gene from the teleost zebrafish (Danio rerio).
    Molecular Brain Research, 84, 16, 2000.
    [85] K ′Alm′An, M., The chemistry of the opioid receptor binding sites, Journal of
    Peptide Science, 9, 333353, 2003.
    [86] Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox,
    B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M. and
    Miyano, M., Crystal structure of rhodopsin: A G protein-coupled receptor.
    Science, 289, 739745, 2000.
    [87] Schwartz, T.W., Locating ligand-binding sites in 7TM receptors by protein
    engineering. Current opinion in biotechnology, 5, 434444, 1994.
    [88] Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox,B.A., Trong, I.L., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M. and
    Miyano, M., Crystal structure of rhodopsin: A G protein-coupled receptor.
    Science, 289, 739–745, 2000.
    [89] Connor, M. and Christie, M.D., Opioid receptor signalling mechanisms.
    Clinical and Experimental Pharmacology and Physiology, 26, 493499, 1999.
    [90] Salamon, Z., Cowell, S., Varga, E., Yamamura, H.I., Hruby, V.J. and Tollin, G.,
    Plasmon resonance studies of agonist/antagonist binding to the human δ-opioid
    receptor: New structural insights into receptor-ligand interactions. Biophysical
    Journal, 79, 24632474, 2000.
    [91] Salamon, Z., Hruby, V.J., Tollin, G. and Cowell, S., Binding of
    agonists/antagonists and inverse agonists to the human δ-opioid receptor
    produces distinctly different conformational states distinguishable by
    plasmon-waveguide resonance spectroscopy. Journal of Peptide Research, 60,
    322328, 2002.
    [92] Hamm, H.E., The many faces of G protein signaling. Journal of Biological
    Chemistry, 273, 669672, 1998.
    [93] Birnbaumer, L., Receptor-to-effector signaling through G proteins: Roles for
    βγ dimers as well as α subunits. Cell, 71, 10691072, 1992.
    [94] Teschemacher, H., Atypical opioid peptides. Handbook of experimental
    pharmacology, 104, 499528, 1993.
    [95] Hollt, V., Opioid peptide processing and receptor selectivity. Annual Review of
    Pharmacology and Toxicology, 26, 5977, 1986.
    [96] Nakanishi, S., Inoue, A., Kita, T., Nakamura, M., Chang, A.C., Cohen, S.N.
    and Numa, S., Nucleotide sequence of cloned cDNA for bovinecorticotropin-β-lipotropin precursor. Nature, 278, 423427, 1979.
    [97] Corbett, A.D., Paterson, S.J. and Kosterlitz, H.W. Selectivity of ligands for
    opioid receptors. Handbook of experimental pharmacology, 104, 645679,
    1993.
    [98] Goldstein, A., Tachibana, S., Lowney, L.I., Hunkapiller, M. and Hood, L.
    Dynorphin-(1-13), an extraordinarily potent opioid peptide. Proceedings of the
    National Academy of Sciences of the United States of America,76, 66666670,
    1979.
    [99] Goldstein, A., Fischli, W., Lowney, L.I., Hunkapiller, M. and Hood, L.,
    Porcine pituitary dynorphin: Complete amino acid sequence of the biologically
    active heptadecapeptide. Proceedings of the National Academy of Sciences of
    the United States of America, 78, 72197223, 1981.
    [100] Nyberg, F., Sanderson, K. and Glamsta, E.L., The hemorphins: A new class of
    opioid peptides derived from the blood protein hemoglobin. Biopolymers, 43,
    147156, 1997.
    [101] Zhao, Q., Garreau, I., Sannier, F. and Piot, J.M., Opioid peptides derived from
    hemoglobin: Hemorphins. Biopolymers, 43, 7598, 1997.
    [102] Zioudrou, C., Streaty, R.A., Klee and W.A., Opioid peptides derived from
    food proteins. The exorphins. Journal of Biological Chemistry, 254,
    24462449, 1979.
    [103]Brantl, V., Teschemacher, H., Henschen, A. and Lottspeich, F., Novel opioid
    peptides derived from casein (beta-casomorphins). I. Isolation from bovine
    casein peptone. Hoppe Seylers Z Physiol Chem, 360, 12111216, 1979.
    [104]Meisel, H., Biochemical properties of regulatory peptides derived from milk
    proteins. Biopolymers, 43, 119128, 1997.[105]Kampa, M., Loukas, S., Hatzoglou, A., Martin, P., Martin, P.M. and Castanas,
    E., Identification of a novel opioid peptide (Tyr-Val-Pro-Phe-Pro) derived from
    human αs1-casein (αs1-casomorphin and αs1-casomorphin amide).
    Biochemical Journal, 319, 903908, 1996.
    [106]Kampa, M., Bakogeorgou, E., Hatzoglou, A., Damianaki, A., Martin, P.M. and
    Castanas, E., Opioid alkaloids and casomorphin peptides decrease the
    proliferation of prostatic cancer cell lines (LNCaP, PC3 and DU145) through a
    partial interaction with opioid receptors. European Journal of Pharmacology,
    335, 255265, 1997.
    [107] Nyberg, F., Sanderson, K. and Glamsta, E.L. The hemorphins: A new class of
    opioid peptides derived from the blood protein hemoglobin. Biopolymers, 43,
    147156, 1997.
    [108]Horvath, A. and Kastin, A.J., Evidence for presence of Tyr-MIF-1
    (Tyr-Pro-Leu-Gly-NH2) in human brain cortex. International journal of
    peptide and protein research, 36, 281284, 1990.
    [109] Erchegyi, J., Kastin, A.J. and Zadina, J.E., Isolation of a novel tetrapeptide
    with opiate and antiopiate activity from human brain cortex:
    Tyr-Pro-Trp-Gly-NH2 (Tyr-W-MIF-1). Peptides, 13, 623631, 1992.
    [110]Hackler, L., Kastin, A.J., Erchegyi, J. anf Zadina, J.E., Isolation of
    Tyr-W-MIF-1 from bovine hypothalami. Neuropeptides, 24, 159164, 1993.
    [111] Kosterlitz, H.W. and Watt, A.J., Kinetic parameters of narcotic agonists and
    antagonists with particular reference to nallylnoroxymorphone (naloxone).
    British Journal of Pharmacology and Chemotherapy, 33, 266276, 1968.
    [112] Hruby, V.J. and Gehring, C.A., Recent developments in the design of receptor
    specific opioid peptides. Medicinal Research Reviews, 9, 343401, 1989.[113]Schwyzer, R., ACTH: A short introductory review. Annals of the New York
    Academy of Sciences, 297, 326, 1977.
    [114]Ghose, A.K. and Wendoloski, J.J., Pharmacophore modelling: Methods,
    experimental verification and applications. Perspectives in Drug Discovery
    and Design, 9-11, 253271, 1998.
    [115]Ehrlich, P., ber den jetzigen Stand der Chemotherapie. Chem. Ber., 42,
    1747, 1909.
    [116] Gund, P., Pharmacophoric pattern searching and receptor mapping. Annual
    Reports in Medicinal Chemistry, 14, 299308, 1979.
    [117] Ghose, A.K., Logan, M.E., Treasurywala, A.M., Wang, H., Wahl, R.C.,
    Tomczuk, B.E., Gowravaram, M.R., Jaeger, E.P. and Wendoloski, J.J.,
    Determination of pharmacophoric geometry for collagenase inhibitors using a
    novel computational method and its verification using molecular dynamics,
    NMR and X-ray crystallography. Journal of the American Chemical Society,
    17, 46714682, 1995.
    [118] Beckett, A.H. and Casy, A.F., Synthetic analgesics: Stereochemical
    considerations. The Journal of pharmacy and pharmacology, 6, 9861001,
    1954.
    [119] Blumberg, H., Dayton, H.B. and Wolf, P.S., Counteraction of narcotic
    antagonist analgesics by the narcotic antagonist naloxone. Proceedings of the
    Society for Experimental Biology and Medicine, 123, 755758, 1966.
    [120] Pert, C.B. and Snyder, S.H., Opiate receptor: Demonstration in nervous tissue.
    Science, 179, 10111014, 1973.
    [121]Terenius, L., Stereospecific interaction between narcotic analgesics and a
    synaptic plasm a membrane fraction of rat cerebral cortex. Actapharmacologica et toxicological, 32, 317320, 1973.
    [122]Simon, E.J., Hiller, J.M. and Edelman, I., Stereospecific binding of the potent
    narcotic analgesic [3H]etorphine to rat-brain homogenate. Proceeding of the
    National Academy of Sciences of the United States of America, 70, 19471949,
    1973.
    [123]Dondio, G., Ronzoni, S., Eggleston, D.S., Artico, M., Petrillo, P., Petrone, G.,
    Visentin, L., Farina, C., Vecchietti, V. and Clarke, G.D., Discovery of a novel
    class of substituted pyrrolooctahydroisoquinolines aspotent and selective δ
    opioidagonists, based on an extension of the message-address concept. Journal
    of Medicinal Chemistry, 40, 31923198, 1997.
    [124]Huang, P., Kim, S. and Loew, G., Development of a common 3D
    pharmacophore for δ  -opioid recognition from peptides and non-peptides
    using a novel computer program. Journal of Computer-Aided Molecular
    Design, 11, 2128, 1997.
    [125] Schiller, P.W., Weltrowska, G., Nguyen, T.M., Willes, B.C., Chung, N.N. and
    Lemieux, C., TIPP[Ψ]: A highly potent and stable pseudopeptide δ ppioid
    receptor antagonist with extraordinary δ selectivity. Journal of Medicinal
    Chemistry, 36, 31823187, 1993.
    [126]Coop, A. and Jacobson, A.E., The LMC δ opioid recognition pharmacophore:
    Comparison of SNC80 and oxymorphindole. Bioorganic & Medicinal
    Chemistry Letters, 9, 357362, 1999.
    [127] Filizola, M., Villar, H.O. and Loew, G.H., Differentiation of δ, μ, and κ opioid
    receptor agonists based on pharmacophore development and computed
    physicochemical properties. Journal of Computer-Aided Molecular Design, 15,
    297307, 2001.[128]Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S.
    and Karplus, M., CHARMM: A program for macromolecular energy,
    minimization, and dynamics calculations. Journal of Computational Chemistry,
    4, 187217, 1983.
    [129] Temussi, P.A., Picone, D., Castiglione-Morelli, M.A., Motta, A. and Tancredi,
    T., Bioactive conformation of linear peptides in solution: An elusive goal.
    Biopolymers, 28, 91107, 1989.
    [130]Karle, I.L., Karle, J., Mastropaolo, D., Camerman, A. and Camerman, N.,
    [Leu5]enkepalin: Four crystallizing conformers with extended backbones that
    form an antiparallel -sheet. Acta Crystallogr, B39, 625637, 1983.
    [131] Smith, D. and Griffin, J.F., Conformation of [Leu5]enkephalin from X-ray
    diffraction: Features important for recognition at opiate receptor. Science, 199,
    12141216, 1978.
    [132]Aubry, A., Birlirakis, N., Sakarellos-Daitsiotis, M., Sakarellos, C. and
    Marraud, M., A crystal molecular conformation of leucine-enkephalin related
    to the morphine molecule. Biopolymers, 28, 2740, 1989.
    [133]Doi, M., Tanaka, M., Ishida, T. , Inoue M., Fujiwara T., Tomita K., Kimura T.,
    Sakakibara S. and Sheldrick G.M., Crystal structures of [Met5] and
    [(4-bromo)Phe4, Met5]enkephalins: Formation of a dimeric antiparallel 
    structure. Japanese Biochemical Society, 101, 485490, 1987.
    [134] Deschamps, J.R., The role of crystallography in drug design. AAPS Journal, 7,
    E813E819, 2005.
    [135] Griffin, J.F., Langs, D.A., Smith,G.D., Blundell, T.L., Tickle, I.J. and
    Bedarkar, S., The crystal-structure of [Met5]enkephalin and a third form of
    [Leu5]enkephalin: Observations of a novel pleated -sheet. Proceeding of theNational Academy of Sciences of the United States of America, 83, 32723276,
    1986.
    [136]Mastropaolo, D., Camerman, A. and Camerman, N., Crystal structure of
    methionine enkephalin. Biochemical and Biophysical Research
    Communications, 134, 698703, 1986.
    [137] Ishida, T., Kenmotsu, M., Mino, Y., Inoue, M., Fujiwara, T., Tomita, K.,
    Kimura, T. and Sakakibara, S., X-ray diffraction studies of enkephalins.
    Biochemical Journal, 218, 677689, 1984.
    [138]Doi, M., Tanaka, M., Ishida, T., Inoue, M., Fujiwara, T., Tomita, K., Kimura,
    T., Sakakibara, S. and Sheldrick, G.M., Crystal structures of [Met5] and
    [(4-Bromo)Phe4, Met5]: Formation of a dimeric antiparallel β-structure. The
    Journal of Biochemistry, 101, 485490, 1987.
    [139]Mastropaolo, D., Camerman ,A., Ma, L.Y. and Camerman, N., Crystal
    structure of an extended-conformation leucine-enkephalin dimer monohydrate.
    Life Sciences, 40, 19951999, 1987.
    [140] Karle, I.L., Karle, J., Mastropaolo, D., Camerman, A. and Camerman, N.,
    [Leu5]enkephalin: Four cocrystallizing conformers with extended backbones
    that form an antipapallel β-sheet. Acta Crystallographica B, 39, 625637,
    1983.
    [141]Smith, D. and Griffin, J.F., Conformation of [Leu5]enkephalin from X-ray
    diffraction: Features important for recognition at opiate receptor. Science, 199,
    12141216, 1978.
    [142] Porreca, F., Bilsky, E.J., Raffa, R.B. and Lai, J., Pharmacological
    characterization of δ- and κ-receptors. In, Tseng, L.F. (ed), The pharmacology
    of opioid peptides. Harwood Academic Publishers, Germany, pp.219248,1995.
    [143] Lindahl, E., Hess, B. and van der Spoel, D., GROMACS 3.0: A package for
    molecular simulation and trajectory analysis. Journal of Molecular Modeling,
    7, 306317, 2001.
    [144] Scott, W.R.P., Huenenberger, P., Tironi, I., Mark, A., Billeter, S., Fennen, J.,
    Torda, A., Huber, T., Krueger, P. and van Gunsteren, W., The GROMOS
    Biomolecular Simulation Program Package. Journal of Physical Chemistry A,
    103, 35963607, 1999.
    [145] Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Dinola, A. and Haak,
    J.R., Molecular dynamics with coupling to an external bath. Journal of
    Chemical Physics, 81, 36843690, 1984.
    [146]Darden, T., York, D. and Pedersen, L., Particle mesh Ewald: An N log(N)
    method for Ewald sums in large systems. Journal of Chemical Physics, 98,
    1008910092, 1993.
    [147]Dudowicz, J., Freed, K.F. and Shen, M.Y., Hydration structure of
    met-enkephalin: A molecular dynamics study, Journal of Chemical Physics,
    118, 19891995, 2003.
    [148]Yoneda, S., Kitamura, K., Doi, M., Inoue, M. and Ishida, T., Importance of
    folded monomer and extended antiparallel dimmer structures as enkephalin
    active conformation: Molecular dynamics simulations of [Met5]enkephalin in
    water. Federation of European Biochemical Societies Letters, 239, 271275,
    1988.
    [149] Li, C.H., Beta endorphin. Cell, 31, 504505, 1982.
    [150] Goldstein, A., Tachibana, S., Lowney, L.I., Hunkapillar, M. and Hood, L.,
    Dynorphin (1-13) an extraordinarily potent opioid peptide. Proceeding of theNational Academy of Sciences of the United States of America, 76, 66666670,
    1979.
    [151] Karle, I.L., Karle, J., Mastropaolo, D., Camerman, A. and Camerman, N.,
    [Leu5]enkephalin: Four cocrystallizing conformers with extended backbones
    that form an antiparallel β-sheet. Acta Crystallographica Section B: Structural
    Science, 39, 625637, 1983.
    [152]Khaled, M.A., Long, M.M., Thompson, W.D., Bradley, R.J., Brown, G.B. and
    Urry, D.W., Conformational states of enkephalins in solution. Biochemical and
    Biophysical Research Communications, 76, 224231, 1977.
    [153] Stimson, E.R., Meinwald, Y.C. and Scheraga, H.A., Solution conformation of
    enkephalin: A nuclear magnetic resonance study of 13C-enriched carbonyl
    carbons in [Leu5]enkephalin. Biochemistry, 18, 16611671, 1979.
    [154]Gupta, G., Sarma, M.H. and Dhingra, M.M., NOE data at 500 MHz reveal the
    proximity of phenyl and tyrosine rings in enkephalin. Federation of European
    Biochemical Societies Letters, 198, 245250, 1986.
    [155]Abdali, S., Jensen, M.O. and Bohr, H.J., Energy levels and quantum states of
    [Leu5]enkephalin conformations based on theoretical and experimental
    investigations. Journal of Physics: Condensed Matter, 15, S1853S1860,
    2003.
    [156] Abdali, S., Jalkanen, K.J., Cao, X. , Nafie, L.A. and Bohr, H., Conformational
    determination of [Leu5]enkephalin based on theoretical and experimental VA
    and VCD spectral analyses. Physical Chemistry and Chemical Physics, 6,
    24342439, 2004.
    [157] Smith, P.E. and Pettitt, B.M., Modeling solvent in biomolecular systems,
    Journal of Physical Chemistry, 98, 97009711, 1994.National Academy of Sciences of the United States of America, 76, 66666670,
    1979.
    [151] Karle, I.L., Karle, J., Mastropaolo, D., Camerman, A. and Camerman, N.,
    [Leu5]enkephalin: Four cocrystallizing conformers with extended backbones
    that form an antiparallel β-sheet. Acta Crystallographica Section B: Structural
    Science, 39, 625637, 1983.
    [152]Khaled, M.A., Long, M.M., Thompson, W.D., Bradley, R.J., Brown, G.B. and
    Urry, D.W., Conformational states of enkephalins in solution. Biochemical and
    Biophysical Research Communications, 76, 224231, 1977.
    [153] Stimson, E.R., Meinwald, Y.C. and Scheraga, H.A., Solution conformation of
    enkephalin: A nuclear magnetic resonance study of 13C-enriched carbonyl
    carbons in [Leu5]enkephalin. Biochemistry, 18, 16611671, 1979.
    [154]Gupta, G., Sarma, M.H. and Dhingra, M.M., NOE data at 500 MHz reveal the
    proximity of phenyl and tyrosine rings in enkephalin. Federation of European
    Biochemical Societies Letters, 198, 245250, 1986.
    [155]Abdali, S., Jensen, M.O. and Bohr, H.J., Energy levels and quantum states of
    [Leu5]enkephalin conformations based on theoretical and experimental
    investigations. Journal of Physics: Condensed Matter, 15, S1853S1860,
    2003.
    [156] Abdali, S., Jalkanen, K.J., Cao, X. , Nafie, L.A. and Bohr, H., Conformational
    determination of [Leu5]enkephalin based on theoretical and experimental VA
    and VCD spectral analyses. Physical Chemistry and Chemical Physics, 6,
    24342439, 2004.
    [157] Smith, P.E. and Pettitt, B.M., Modeling solvent in biomolecular systems,
    Journal of Physical Chemistry, 98, 97009711, 1994.[158] Van der Spoel, D. and Berendsen, H.J., Molecular dynamics simulations of
    Leu-enkephalin in water and DMSO. Biophysical Journal, 72, 20322041,
    1997.
    [159] Nielsen, B.G., Jensen, M.O. and Bohr, H.G., The probability distribution of
    side-chain conformations in [Leu5] and [Met5]enkephalin determines the
    potency and selectivity to μ and δ opiate receptors. Biopolymers, 71, 577592,
    2003.
    [160] Karvounis, G., Nerukh, D. and Glen, R.C., Water network dynamics at the
    critical moment of the peptide's β turn formation: A molecular dynamics study.
    Journal of Chemical Physics, 121, 49254935, 2004.
    [161]Dolle, R.E., Machaut, M., Martinez-Teipel, B., Belanger, S., Cassel, J.A.,
    Stabley, G.J., Graczyk, T.M. and DeHaven, R.N.,
    (4-Carboxamido)phenylalanine is a surrogate for tyrosine in opioid receptor
    peptide ligands. Bioorganic & Medicinal Chemistry Letters, 14, 35453548,
    2004.
    [162]Marrone, T.J., Briggs, J.M. and McCammon, J.A., Structure-based drug
    design: Computational advances. Annual Reviews Pharmacology and
    Toxicology, 37, 7190, 1997.
    [163]Hansson, T., Oostenbrink, C. and van Gunsteren, W., Molecular dynamics
    simulations. Current Opinion in Structural Biology, 12, 190196, 2002.
    [164]Karplus, M. and McCammon, J.A., Molecular dynamics simulations of
    biomolecules. Nature Structural & Molecular Biology, 9, 646652, 2002.
    [165]Schuettelkopf, A.W. and van Aalten, D.M.F., PRODRG: A tool for
    high-throughput crystallography of protein-ligand complexes. Acta
    Crystallographica Section D: Biological Crystallography, 60, 13551363,2004.
    [166]Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F. and Hermans, J., In
    Intermolecular Forces, Pullman, B., Ed., Reidel, Dordrecht, Holland, pp.
    331342, 1981.
    [167]Aburi, M. and Smith, P.E., A conformational analysis of leucine enkephalin as
    a function of pH. Biopolymers, 64, 177188, 2002.
    [168]Khaled, M.A., Long, M.M., Thompson, W.D., Bradley, R.J., Brown, G.B. and
    Urry, D.W., Conformational states of enkephalins in solution. Biochemical and
    Biophysical Research Communications, 76, 224231, 1977.
    [169]Stimson, E.R., Meinwald, Y.C. and Scheraga, H.A., Solution conformational
    of enkephalin: Nuclear magnetic resonance study of C13 enriched carbonyl
    carbons in [Leu5]-enkephalin. Biochemistry, 18, 16611671, 1979.
    [170]Gupta, G., Sarma, M.H. and Dhingra, M.M., Noe data at 500 MHz reveal the
    proximity of phenyl and tyrosine rings in enkephalin. Federation of European
    Biochemical Societies Letters, 198, 245250, 1986.
    [171]van der Spoel, D. and Berendsen, H.J. , Molecular dynamics simulations of
    Leu-enkephalin in water and DMSO. Biophysical Journal, 72, 20322041,
    1997.
    [172]Nielsen, B.G., Jensen, M.O. and Bohr, H.G., The probability distribution of
    side-chain conformations in [Leu5] and [Met5]enkephalin determines the
    potency and selectivity to μ and δ opiate receptors. Biopolymers, 71, 577592,
    2003.
    [173]Karvounis, G., Nerukh, D. and Glen, R.C., Water network dynamics at the
    critical moment of a peptide's β-turn formation, A molecular dynamics study.
    Journal of Chemical Physics, 121, 49254935, 2004.[174]Wang, Y. and Kuczera, K., Molecular dynamics simulations of cyclic and
    linear DPDPE: Influence of the disulfide bond on peptide flexibility. Journal
    of Physical Chemistry, 100, 25552563, 1996.
    [175]Mosberg, H.I. and Fowler, C.B., Development and validation of opioid
    ligand-receptor interaction models: The structural basis of  vs.  selectivity.
    Journal of Peptide Research, 60, 329335, 2002.
    [176]Przydzial, M.J., Pogozheva, I.D., Bosse, K.E., Andrews, S.M., Tharp, T.A.,
    Traynor, J.R. and Mosberg, H.I., Roles of residues 3 and 4 in cyclic
    tetrapeptide ligand recognition by the -opioid receptor. Journal of Peptide
    Research, 65, 333342, 2005.
    [177]Aldrich, J.V. and Vigil-Cruz, S.C., Narcotic Analgesics. In Burgers Medicinal
    Chemistry and Drug Discovery, Abraham, D., Ed., John Wiley & Sons: New
    York, 6, 329, 2003.
    [178]Wollemann, M. and Benyhe, S., Non-opioid actions of opioid peptides. Life
    Sciences, 75, 257270, 2004.
    [179]Nyberg, F., Sanderson, K. and Glamsta, E.L., The hemorphins: A new class of
    opioid peptides derived from the blood protein hemoglobin. Biopolymers, 43,
    14756, 1997.
    [180]Zhao, Q., Garreau, I., Sannier, F. and Piot, J. M., Opioid peptides derived from
    hemoglobin: Hemorphins. Biopolymers, 43, 7598, 1997.
    [181]Zioudrou, C., Streaty, R.A. and Klee, W.A., Opioid peptides derived from
    food proteins: The exorphins. Journal of Biological Chemistry, 254,
    24462449, 1979.
    [182]Brantl, V., Teschemacher, H., Henschen, A. and Lottspeich, F., Novel opioid
    peptides derived from casein (-casomorphins). I. Isolation from bovine caseinpeptone. Hoppe-Seylers Zeitschrift Physiologische Chemie, 360, 12111216,
    1979.
    [183]Kampa, M., Loukas, S., Hatzoglou, A., Martin, P., Martin, P.M. and Castanas,
    E., Identification of a novel opioid peptide (Tyr-Val-Pro-Phe-Pro) derived from
    human αs1 -casein (αs1-casomorphin, and αs1-casomorphin amide).
    Biochemical Journal, 319, 903908, 1996.
    [184]Kampa, M., Bakogeorgou, E., Hatzoglou, A., Damianaki, A., Martin, P.M. and
    Castanas, E., Opioid alkaloids and casomorphin peptides decrease the
    proliferation of prostatic cancer cell lines (LNCaP, PC3 and DU145) through a
    partial interaction with opioid receptors. European Journal of Pharmacology,
    335, 255265, 1997.
    [185]Meisel, H., Biochemical properties of regulator peptides derived from milk
    proteins. Biopolymers, 43, 119128, 1997.
    [186]Zagon, I.S., McLaughlin, P.J., Goodman, S.R. and Rhodes, R.E., Opioid
    receptors and endogenous opioids in diverse human and animal cancers.
    Journal of the National Cancer Institute, 79, 10591065, 1987.
    [187]Hatzoglou, A., Gravanis, A., Margioris, A.N., Zoumakis, E. and Castanas, E.,
    Identification and characterization of opioid-binding sites present in the
    Ishikawa human endometrial adenocarcinoma cell line. Journal of Clinical
    Endocrinology & Metabolism, 80, 418423, 1995.
    [188]Chatikhine, V.A., Chevrier, A., Chauzy, C., Duval, C., d’Anjou, J., Girard, N.
    and Delpech, B., Expression of opioid peptides in cells and stroma of human
    breast cancer and adenofibromas. Cancer Letters, 77, 5156, 1994.
    [189]Francois, A., Chatikhine, V.A., Chevallier, B., Ren, G.S., Berry, M., Chevrier,
    A. and Delpech, B., Neuroendocrine primary small cell carcinoma of thebreast: Report of a case and review of the literature. American Journal of
    Clinical Oncology, 18, 133138, 1995.
    [190]Maneckjee, R., Biswas, R. and Vonderhaar, B.K., Binding of opioids to human
    MCF-7 breast cancer cells and their effects on growth. Cancer Research, 50,
    22342238, 1990.
    [191]Hatzoglou, A., Bakogeorgou, E. and Castanas, E. The antiproliferative effect
    of opioid receptor agonists on the T47D human breast cancer cell line, is
    partially mediated through opioid receptors. European Journal of
    Pharmacology, 296, 199207, 1996.
    [192]Shahabi, N.A. and Sharp, B.M., Antiproliferative effects of δ opioids on
    highly purified CD4+ and CD8+ murine T cells. Journal of pharmacology and
    experimental therapeutics, 273, 11051113, 1995.
    [193]Zagon, I.S., Hytrek, S.D. and McLaughlin, P., Opioid growth factor tonically
    inhibits human colon cancer cell proliferation in tissue culture. American
    Journal of Physiology, 271, R511R518, 1996.
    [194]McLaughlin, P.J., Levin, R.J. and Zagon, I.S., Regulation of human head and
    neck squamous cell carcinoma growth in tissue culture by opioid growth factor.
    International Journal of Oncology, 14, 991998, 1999.
    [195]Zagon, I.S., Smith, J.P., Conter, R. and McLaughlin, P.J., Identification and
    characterization of opioid growth factor receptor in human pancreatic
    adenocarcinoma. International Journal of Molecular Medicine, 5, 7784,
    2000.
    [196]Millan, M.J., κ-opioid receptors and analgesia. Trends in Pharmacological
    Sciences, 11, 7076, 1990.
    [197] Soukara, S., Maier, C.A., Predoiu, U., Ehret, A., Jackisch, R. and Wnsch, B.,Methylated Analogues of Methyl (R)-4-(3,4-Dichlorophenylacetyl)-
    3-(pyrrolidin-1-ylmethyl)piperazine-1-carboxylate (GR-89,696) as highly
    potent κ receptor agonists: Stereoselective synthesis, opioid-receptor affinity,
    receptor selectivity, and functional studies. Journal of Medicinal Chemistry, 44,
    28142826, 2001.
    [198] Holzgrabe, U. and Brand, W., Mechanism of action of the
    diazabicyclononanone-type κ-agonists. Journal of Medicinal Chemistry, 46,
    13831389, 2003.
    [199] Giardina, G., Clarke, G.D., Grugni, M., Sbacchi, M. and Vecchietti, V., Central
    and peripheral analgesic agents: Chemical strategies for limiting brain
    penetration in κ-opioid agonists belonging to different chemical classes.
    Farmaco, 50, 405418, 1995.
    [200] Binder, W. and Walker, J.S., Effect of the peripherally selective κ-opioid
    agonist, asimadoline, on adjuvant arthritis. British journal of pharmacology,
    124, 647654, 1998.
    [201] Machelska, H., Pfluger, M., Weber, W., Piranvisseh-Volk, M., Daubert, J.D.,
    Dehaven, R. and Stein, C., Peripheral effects of the κ-opioid agonist EMD
    61753 on pain and inflammation in rats and humans. Journal of pharmacology
    and experimental therapeutics, 290, 354361, 1999.
    [202] Ko, M.C., Butelman, E.R. and Woods, J.H., Activation of peripheral κ opioid
    receptors inhibits capsaicin-induced thermal nociception in rhesus monkeys.
    Journal of pharmacology and experimental therapeutics, 289, 378385, 1999.
    [203] Ko, M.C., Willmont, K.J., Burritt, A., Hruby, V.J. and Woods, J.H., Local
    inhibitory effects of dynorphin A (1–17) on capsaicin-induced thermalallodynia in rhesus monkeys. European Journal of Pharmacology, 402, 6976,
    2000.
    [204] DeHaven-Hudkins, D.L. and Dolle, R.E., Peripherally restricted opioid
    agonists as novel analgesic agents. Current Pharmaceutical Design, 10,
    743757, 2004.
    [205] Johnsen, L.B., Rasmussen, L.K., Petersen, T.E. and Berglund, L.,
    Characterization of three types of human αs1-casein mRNA transcripts.
    Biochemical Journal, 309, 237242, 1995.
    [206] Chang, K.J., Killian, A., Hazum, E., Cuatrecasas, P. and Chang, J.K.,
    Morphiceptin (NH4-tyr-pro-phe-pro-COHN2): A potent and specific agonist
    for morphine (μ) receptors. Science, 212, 7577, 1981.
    [207] Yamazaki, T., Ro, S., Goodman, M., Chung, N.N. and Schiller, P.W., A
    topochemical approach to explain morphiceptin bioactivity. Journal of
    Medicinal Chemistry, 36, 708719, 1993.
    [208] Keller, M., Boissard, C., Patiny, L., Chung, N.N., Lemieux, C., Mutter, M. and
    Schiller, P. W., Pseudoproline-containing analogues of morphiceptin and
    endomorphin-2: Evidence for a cis Tyr-Pro amide bond in the bioactive
    conformation. Journal of Medicinal Chemistry, 44, 38963903, 2001.
    [209]Wang, Y. and Kuczera, K., Molecular dynamics simulations of cyclic and
    linear DPDPE: Influence of the disulfide bond on peptide flexibility. Journal
    of Chemical Physics, 100, 25552560, 1996.
    [210] Mosberg, H.I. and Fowler, C.B., Development and validation of opioid
    ligand–receptor interaction models: The structural basis of μ vs. δ selectivity.
    Journal of Peptide Research, 60, 329335, 2002.
    [211] Przydzial, M.J., Pogozheva, I.D., Bosse, K.E., Andrews, S.M., Tharp, T.A.,Traynor, J.R. and Mosberg, H.I., Design of high affinity cyclic pentapeptide
    ligands for κ-opioid receptors. Journal of Peptide Research, 65, 333347,
    2005.
    [212] Dondio, G., Ronzoni, S., Eggleston, D.S., Artico, M., Petrillo, P., Petrone, G.,
    Visentin, L., Farina, C., Vecchietti, V. and Clarke, G.D., Discovery of a novel
    class of substituted pyrrolooctahydroisoquinolines as potent and selective δ
    opioid agonists: Based on an extension of the message-address concept.
    Journal of Medicinal Chemistry, 40, 31923198, 1997.
    [213] Huang, P., Kim, S. and Loew, G., Development of a common 3D
    pharmacophore for opioid recognition from peptides and non-peptides using a
    novel computer program. Journal of Computer-Aided Molecular Design, 11,
    2128, 1997.
    [214] Coop, A. and Jacobson, A.E., The LMC delta opioid recognition
    pharmacophore: comparison of SNC80 and oxymorphindole. Bioorganic &
    Medicinal Chemistry Letters, 9, 357362, 1999.
    [215] Henschen, A., Lottspeich, F., Brantl, V., and Teschemacher, H., Novel opioid
    peptides derived from casein (β-casomorphins). II. Structure of active
    components from bovine casein peptone. Hoppe-Seyler's Zeitschrift fr
    physiologische Chemie, 360, 12171224, 1979.
    [216] Chang, K.J., Lillian, A, Hazum, E, Cuatrecasas, P., and Chang, J.K.,
    Morphiceptin (NH4-tyr-pro-phe-pro-COHN2): A potent and specific agonist
    for morphine (μ) receptors. Science, 212, 7577, 1981.
    [217] Brantl, V., Gramsch, C., Lottspeich, F., Mertz, R., Jaeger, K.H. and Herz, A.,
    Novel opioid peptides defived from hemoglobin: Hemorphins. European
    Journal of Pharmacology, 125, 309310, 1986.[218] Blanchard, S.G., Lee, P.H.K., Pugh. W.W., Hong, J.S., and Chang, K.J.,
    Characterization of the binding of a morphine (μ) receptor-specific ligand:
    Tyr-Pro-NMePhe-D-Pro-NH2, [3H]-PL17. Molecular pharmacology, 31,
    326333, 1987.
    [219] Horvath, A. and Kastin, A.J., Isolation of tyrosine-melanocyte-stimulating
    hormone release-inhibiting factor 1 from bovine brain tissue. Journal of
    Biological Chemistry, 264, 21752179, 1989.
    [220] Erchegyi, J., Kastin, A.J., and Zadina, J.E., Isolation of a novel tetrapeptide
    with opiate and antiopiate activity from human cortex: Tyr-Pro-Trp-Gly-NH2
    (Tyr-WMIF-1). Peptides, 13, 623631, 1992.
    [221] Zadina, J.E., Kastin, A.J., Ge, L.J., and Hackler, L., μ, δ and κ opiate receptor
    binding of tyr-MIF-1 and of tyr-W-MIF-1, its active fragments, and two potent
    analogs. Life Sciences, 55, PL461PL466, 1994.
    [222] Yamazaki, T., Ro, S., Goodman, M., Chung, N.N., and Schiller, P.W., A
    topochemical approach to explain morphiceptin bioactivity. Journal of
    Medicinal Chemistry, 36, 708719, 1993.
    [223] Hackler, L., Zadina, J.E., Ge, L.J. and Kastin, A.J., Isolation of relatively large
    amounts of endomorphin-1 and endomorphin-2 from human brain cortex.
    Peptides, 18, 16351639, 1997.
    [224] Terskiy, A., Wannemacher, K.M., Yadav, P.N., Tsai, M., Tian, B. and Howells,
    R.D., Search of the human proteome for endomorphin-1 and endomorphin-2
    precursor proteins. Life Sciences, 81, 15931601, 2007.
    [225] Schwyzer, R., ACTH: A short introductory review. Annals of the New York
    Academy of Sciences, 297, 2326, 1977.
    [226] Yamazaki, T., Ro, S., Goodman, M., Chung, N.N., and Schiller, P.W., Atopochemical approach to explain morphiceptin bioactivity. Journal of
    Medicinal Chemistry, 36, 708719, 1993.
    [227] In, Y., Minoura, K., Ohishi, H., Minakata, H., Kamigauchi, M., Sugiura, M.
    and Ishida, T., Conformational comparison of μ-selective endomorphin-2 with
    its C-terminal free acid in DMSO solution, by 1H NMR spectroscopy and
    molecular modeling calculation. Journal of Peptide Research, 58, 399412,
    2001.
    [228] Fiori, S., Renner, C., Cramer, J., Pegoraro, S. and Moroder, L., Preferred
    conformation of endomorphin-1 in aqueous and membrane-mimetic
    environments. Journal of Molecular Biology, 291, 163175, 1999.
    [229] Podlogar, B.L., Paterlini, G., Ferguson, D.M., Leo, G.C., Demeter, D.A.,
    Brown, F.K. and Reitz, A.B., Conformational analysis of the endogenous
    μ-opioid agonist endomorphin-1 using NMR spectroscopy and molecular
    modeling. FEBS Letters, 439, 1320, 1998
    [230] Cowell, S.M., Lee, Y.S., Cain, J.P. and Hruby, V.J., Exploring ramachandran
    and chi space: Conformationally constrained amino acids and peptides in the
    design of bioactive polypeptide ligands. Current Medicinal Chemistry, 11,
    27852798, 2004.
    [231] Vanhoof, G., Goossens, F., Meester, I.D., Hendriks, D. and Scharpe, S., Proline
    motifs in peptides and their biological processing, The FASEB Journal, 9,
    736744, 1995.
    [232] Yang, Y.R., Chiu, T.H., and Chen, C.L.. Structure-activity relationships of
    naturally occurring and synthetic opioid tetrapeptides acting on locus
    coeruleus neurons. European Journal of Pharmacology, 372, 229236, 1999.
    [233] Mierke, D.F., No‥ssner, G., Schiller, P.W. and Goodman, M., Morphiceptinanalogs containing 2-aminocyclopentane carboxylic acid as a peptidomimetic
    for proline. International Journal of Peptide and Protein Research, 35, 3545,
    1990.
    [234] Chang, K.J., Killian A., Hazum E., and Cuatrecasas P., Morphiceptin
    (Tyr-Pro-Phe-Pro-CONH2): A potent and specific agonist for morphine (μ)
    receptors. Science, 212, 7577, 1981.
    [235] Chang, K.J., Wei E.T., Killian A., and Chang J.K., Potent morphiceptin
    analogs: Structure activity relationships and morphine-like activities. The
    Journal of pharmacology and experimental therapeutics, 227, 403408, 1983.
    [236] Paterlini, M.G., Avitabile, F., Ostrowski, B.G., Ferguson, D.M. and Portoghese,
    P.S., Stereochemical requirements for receptor recognition of the μ-opioid
    peptide endomorphin-1. Biophysical Journal, 78, 590599, 2000.
    [237] Brent, L., Podlogar, M. Germana. P., Ferguson D.M., Leo G.C., David A.D.,
    Brown, F.K. and Reitz A.B., Conformational analysis of the endogenous
    μ-opioid agonist endomorphin-1 using NMR spectroscopy and molecular
    modeling. FEBS Letters, 439, 1320, 1998.
    [238] Iadanza, M., Hltje,M., Ronsisvalle, G., and Hltje, H.D., κ-opioid receptor
    model in a phospholipid bilayer: Molecular dynamics simulation. Journal of
    Medicinal Chemistry, 45, 48384846, 2002.
    [239] Aburi, M. and Smith, P.E., Modeling and simulation of the human δ opioid
    receptor. Protein Science, 13, 19972008, 2004.
    [240] Zhang, Y., Sham, Y.Y., Rajamani, R.,Gao, J. and Portoghese, P.S., Homology
    modeling and molecular dynamics simulations of the mu opioid receptor in a
    membrane-aqueous system. ChemBioChem, 6, 853859, 2005.

    下載圖示 校內:2010-02-13公開
    校外:2010-02-13公開
    QR CODE