| 研究生: |
吳盈清 Wu, Yng-Ching |
|---|---|
| 論文名稱: |
利用分子動力學研究類鴉片配體的結構與活性 Structure-Activity Relationships of Opioid Ligands:A Molecular Dynamics Study |
| 指導教授: |
黃吉川
Hwang, Chi-Chuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 179 |
| 中文關鍵詞: | 分子動力學 、AM1計算 、結構與活性關係 、藥效基團 |
| 外文關鍵詞: | molecular dynamics, AM1 calculation, structure-activity relationships, pharmacophore |
| 相關次數: | 點閱:88 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要係以分子動力學模擬方法,並搭配量子化學半經驗方法中的AM1計算,來研究類鴉片系統中的配體結構與活性關係,藉以探討其與受體間的結合交互作用機制。對於嚴重的疼痛而言,嗎啡是最廣泛使用的止痛劑,但其在使用過程中會伴隨產生一些副作用。且自從發現人體內存在符合類鴉片受體的內源性物質─「腦啡」後,開發新鎮痛藥物一直以朝向尋找成癮性小且副作用少為努力的目標。由於人體中存在的類鴉片系統,除了具有止痛、鎮靜與欣快的作用外,還會影響情緒、記憶與認知等心理或生理層面。而這些作用便是起源於類鴉片配體與受體結合後所導致的一連串生化調控機制。由於受體本身是一個巨大的膜蛋白,要直接研究胜分子與受體間的交互作用是非常困難的。因此,直至目前為止,對於藥物設計與間接推測受體的選擇性來說,胜分子的結構研究至今仍是一個相當重要的課題。因此,本論文首先於第二章對類鴉片受體與配體的背景做一介紹,接著,第三章至第五章則分別介紹δ、κ、μ三種類鴉片配體的結構與活性研究。希冀藉由這三種不同屬性之類鴉片配體的藥效基團研究,使我們更能了解及釐清整個類鴉片系統中配體與受體結合時的活性關係。綜合本論文之研究內容,我們分別定義出κ-以及μ-藥效基團模型,並與Shenderovich等人所提出的δ藥效基團模型做一比較。最後,希望透過研究三種不同屬性的類鴉片配體之結構穩定特性與藥理活性,能進而做為爾後在藥物設計與醫療上的參考。
The dissertation directs on studying the structure-activity relationships of the various opioid ligands using molecular dynamics simulations and AM1 calculations in order to understand the mechanisms of the active binding interactions between opioid receptors and ligands. It is clear known that morphine is widely used in medicine as strong analgesics for relief of severe pain. Yet, it may cause addiction and withdrawal symptoms as well as other harmful effects. Therefore, since the endogenous opioid peptide of the enkephalin was discovered corresponding to the opioid receptor, the efforts of developing the new analgesic drugs have been toward minimizing a risk of addiction and reducing adverse side effects. Due to the existence of the opioid system in humans, in terms of its functions not only possess analgesia, sedation, and euphoria, but influence of the psychological and physiological levels involve the emotion, memory, and recognition. All of the above-mentioned functions result from a series of biochemical regulations after the binding interactions between opioid receptors and their ligands. Because opioid receptors are large membrane proteins, difficult to study by standard structural techniques. Thus, conformational studies of opioid peptides are still important for drug design and also for indirect receptor mapping. We first introduce a number of backgrounds for opioid receptors and opioid ligands. Subsequently, the structure-activity relationships of δ-, κ- and μ-selective opioid ligands are studied. We hope such investigations can let us more understand the structure-activity relationships of opioid system. In this dissertation, we have well defined the pharmacophore model of κ- and μ-opioid receptor, respectively. These significant results have compared to δ pharmacophore model. Finally, the results of this dissertation will provide some valuable information for drug design and clinical therapy.
[1] Serturner, F.W., Trommsdorff's Journal der Pharmazie fur Aerzte, Apotheker
und Chemisten., 13, 229235, 1805.
[2] Gulland, J.M. and Robinson, R., The morphine group: Part I. A discussion of
the constitutional problem. Journal of the Chemical Society, 123, 980998,
1923.
[3] White, J.M. and Irvine, R.J., Mechanisms of fatal opioid overdose. Addiction,
94, 961972, 1999.
[4] Aparasu, R., McCoy, R.A., Weber, C., Mair, D. and Parasuraman, T.V.,
Opioid-induced emesis among hospitalized nonsurgical patients: Effect on
pain and quality of life. Journal of Pain Symptom Management, 18, 280288,
1999.
[5] Mancini, I. and Bruera, E., Constipation in advanced cancer patients.
Supportive Care in Cancer, 6, 356364, 1998.
[6] Chakrabarti, S., Wang, L., Tang, W.J. and Gintzler, A.R., Chronic morphine
augments adenylyl cyclase phosphorylation: Relevance to altered signaling
during tolerance/dependence. Molecular of Pharmacology, 54, 949953, 1998.
[7] Hughes, J., Smith, T.W., Kosterlitz, H.W., Fothergill, L.A., Moran, B.A. and
Morris, H.R., Identification of two related pentapeptides from the brain with
potent opiate agonist activity. Nature, 258, 577579, 1975.
[8] Beckman, M., The mice that don't miss mom: Love and the μ-opioid receptor.
Science, 304, 18881889, 2004.
[9] Hruby, V. and Gehrig, C., Recent developments in the design of receptor
specific opioid peptides. Medicinal Research Reviews, 9, 343401, 1989.[10] Hruby, V.J. and Agnes, R.S., Conformation-activity relationships of opioid
peptides with selective activities at opioid receptors. Biopolymers, 51, 391410,
1999.
[11] Shenderovich, M.D., Liao, S., Qian, X. and Hruby, V.J., A three-dimensional
model of the δ-opioid pharmacophore: comparative molecular modeling of
peptide and nonpeptide ligands. Biopolymers, 53, 565580, 2000.
[12] Li, T., Fujita, Y., Shiotani, K., Miyazaki, A., Tsuda, Y., Ambo, A., Sasaki, Y.,
Jinsmaa, Y., Marczak, E., Bryant, S.D., Salvadori, S., Lazarus, L.H., Okada, Y.,
Potent Dmt-Tic pharmacophoric δ- and μ-opioid receptor antagonists. Journal
of Medicinal Chemistry, 48, 80358044, 2005.
[13] Bernard, D., Coop, A. and MacKerell Jr, A.D., Conformationally sampled
pharmacophore for peptidic delta opioid ligands. Journal of Medicinal
Chemistry, 48, 77737780, 2005.
[14] an den Eynde, I., Laus, G., Schiller, P.W., Kosson, P., Chung, N.N., Lipkowski,
A.W. and Tourwe, D., A new structural motif for mu-opioid antagonists.
Journal of Medicinal Chemistry, 48, 36443648, 2005.
[15] Munro, T.A., Rizzacasa, M.A., Roth, B.L., Toth, B.A. and Yan, F., Studies
toward the pharmacophore of salvinorin A: A potent kappa opioid receptor
agonist. Journal of Medicinal Chemistry, 48, 345348, 2005.
[16] Neumeyer, J.L., Zhang, A., Xiong, W., Gu, X.H., Hilbert, J.E., Knapp, B.I.,
Negus, S.S., Mello, N.K., Bidlack, J.M., Design and synthesis of novel dimeric
morphinan ligands for κ and μ opioid receptors. Journal of Medicinal
Chemistry, 46, 51625170, 2003.
[17] Bernard, D., Coop, A. and MacKerell, AD Jr., 2D conformationally sampled
pharmacophore: A ligand-based pharmacophore to differentiate delta opioidagonists from antagonists. Journal of the American Chemical Socicty, 125,
31013107, 2003.
[18] Deschamps, J.R., Flippen-Anderson, J.L., George, C., X-ray studies on ligands.
Biopolymers, 66, 287293, 2002.
[19] Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., Journal of the
American Chemical Society, 107, 3902, 1985.
[20] Lim, A.T., Lolait, S., Barlow, J.W., Wai, S.O., Zois, I., Toh, B.H. and Funder,
J.W., Immuno-reactive β-endorphin in sheep ovary. Nature, 303, 709-711,
1983.
[21] Saviano, G.., Crescenzi, O., Picone, D., Temussi, P.A. and Tancredi, T.,
Solution structure of human β-endorphin in helicogenic solvents: A NMR
study. Journal of Peptide Science, 5, 410422, 1999.
[22] Chavkin, C., James, I.F. and Goldstein, A., Dynorphin Is a specific endogenous
ligand of the opioid receptor. Science, 215, 413415, 1982.
[23] Spadaccini, R., Crescenzi, O., Picone, D., Tancredi, T. And Temussi, P.A.,
Solution structure of dynorphin A (1–17): A NMR study in a cryoprotective
mixture at 278 K. Journal of Peptide Science, 5, 306312, 1998.
[24] Zadina, J.E., Hackler, L., Ge, L.J. and Kastin, A.J., A potent and selective
endogenous agonist for the μ-opiate receptor. Nature, 386, 499502, 1997.
[25] Schwyzer, R., Prediction of potency and receptor selectivity of regulatory
peptides: The membrane compartment concept. Peptides, 86, 723, 1987.
[26] Sagan, S., Amiche, M., Delfour, A., Camus, A., Mor, A. and Nicolas, P.,
Differential contribution of C-terminal regions of dermorphin and
dermenkephalin to opioid-sites selection and binding potency. Biochemical
and Biophysical Research Communications, 163, 726732, 1989.[27] Loew, G.H., Molecular modeling of opioid analgesics. Modern Drug
Discovery, 2, 2427, 28, 30, 1999.
[28] Huang, P., Kim, S. and Loew, G., Development of a common 3D
pharmacophore for δ-opioid recognition from peptides and non-peptides using
a novel computer program. Journal of Computer Aided Molecular Design, 11,
212218, 1997.
[29] Keys, C., Payne, P., Amsterdam, P., Toll, L. and Loew, G.H., Conformational
determinants of high affinity δ receptor binding of opioid peptides. Molecular
Pharmacology, 33, 528536, 1988.
[30] Mosberg, H.I., Complementarity of δ opioid ligand pharmacophore and
receptor models. Biopolymers, 51 426439, 1999.
[31] Portoghese, P.S., Moe, S.T. and Takemori, A.E., Selective δ1 opioid receptor
agonist derived from oxymorphone. Evidence for separate recognition sites for
δ1 opioid receptor agonists and antagonists. Journal of Medicinal Chemistry,
36, 25722574, 1993.
[32] Wild, K.D., Fang, L, McNutt, R.W., Chang, K.J., Toth, G., Borsodi, A.,
Yamamura, H.I. and Porreca, F., Binding of BW 373U86, a non-peptide δ
opioid receptor agonist, is not regulated by guanine nucleotides and sodium.
European Journal of Pharmacology, 246, 289292 1993.
[33] Schiller, P.W., Nguyen, T.M., Weltrowska, G., Wilkes, B.C., Marsden, B.J.,
Lemieux, C. and Chung, N.N., Differential stereochemical requirements of μ
versus δ opioid receptors for ligand binding and signal transduction:
Development of a new class of potent and highly delta-selective peptide
antagonists. Proceeding of the National Academy of Sciences of the United
States of America, 89, 1187111875, 1992.[34] Mosberg, H.I. and Fowler, C.B., Development and validation of opioid
ligand-receptor interaction models: the structural basis of μ vs δ selectivity.
Journal of Peptide Research, 60, 329335, 2002.
[35] Alder, B.J., Wainwright, T.E., Phase transition for a hard spheres ystem.
Journal of Chemical Physics, 27, 12081209, 1957.
[36] Rahman, A., Correlations in the motion of atoms in liquid argon. Physical
Review, 136, A405, 1964.
[37] McCammon, J.A., Molecular dynamics study of the bovine pancreatic trypsin
inhibitor. In "Report of the 1976 Workshop, Models for Protein Dynamics,"
Berendsen, H.J.C. Ed., Centre Europeen de Calcul Atomique et Moleculaire,
Universite de Paris IX, France, 137152, 1977.
[38] Kremer, K., Computer simulations for macromolecular science.
Macromolecular Chemistry and Physics, 204, 257264, 2003.
[39] Rickman, J.M. and LeSar, R., Free-energy calculations in materials research,
Annual Review of Materials Research, 32, 195217, 2002.
[40] Sagui, C. and Darden, T.A., Molecular dynamics simulations of biomolecules:
Long-range electrostatic effects. Annual Review of Biophysics and
Biomolecular Structure, 28, 155179, 1999.
[41] Cheatham III, T.E. and Kollman, P.A., Molecular dynamics simulation of
nucleic acids. Annual Review of Physical Chemistry, 51, 435471, 2000.
[42] Wang, W., Donini, O., Reyes, C.M. and Kollman, P.A., Biomolecular
simulations: Recent developments in force fields, simulations of enzyme
catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent
interactions. Annual Review of Biophysics and Biomolecular Structure, 30,
211243, 2001.[43] http://apps.isiknowledge.com/UA_GeneralSearch_input.do?product=UA&sear
ch_mode=GeneralSearch&SID=4AEEfj88B3LiNe9jNHH&preferencesSaved=
(ISI Web of Knowledge 入口網站)
[44] Rognan, D., Molecular dynamics simulations: A tool for drug design.
Perspectives in Drug Discovery and Design, 9-11, 181209, 1998.
[45] Clark, J.A., Liu, L., Price, M., Hersh, B., Edelson, M. and Pasternak, G.W., κ
opiate receptor multiplicity: Evidence for two U50,488-sensitive κ1 subtypes
and a novel κ3 subtype. The Journal of pharmacology and experimental
therapeutics, 251, 461468, 1989.
[46] Harrison, L.M., Kastin, A.J. and Zadina, J.E., Opiate tolerance and dependence:
Receptors, G-proteins, and antiopiates. Peptides, 19, 16031630, 1998.
[47] Kieffer, B.L., Opioids: First lessons from knockout mice. Trends in
Pharmacological Sciences, 20, 1926, 1999.
[48] Evans, C.J., Jr Keith, D.E., Morrison, H., Magendzo, K. and Edwards, R.H.,
Cloning of a δ opioid receptor by functional expression. Science, 258,
19521955, 1992.
[49] Kieffer, B.L., Befort, K., Gaveriaux-Ruff, C. and Hirth, C.G., The δ-opioid
receptor: Isolation of a cDNA by expression cloning and pharmacological
characterization. Proceeding of the National Academy of Sciences of the
United States of America, 89, 1204812052, 1992.
[50] Chen, Y., Mestek, A., Liu, J., Hurley, J.A. and Yu, L., Molecular cloning and
functional expression of a μ-opioid receptor from rat brain. Molecular
pharmacology, 44, 812, 1993.
[51] Minami, M., Toya, T., Katao, Y., Maekawa, K., Nakamura, S., Onogi, T.,
Kaneko, S. and Satoh, M., Cloning and expression of a cDNA for the ratκ-opioid receptor. FEBS letters, 329, 291295, 1993.
[52] Solomon H.S. and Gavril W.P., Historical review: Opioid receptors, Trends in
Pharmacological Sciences, 24, 198205, 2003.
[53] Lasagna, L. and Beecher, H.K., The analgesic effectiveness of nalorphine and
nalorphine-morphine combinations in man. The Journal of pharmacology and
experimental therapeutics, 112, 356363, 1954.
[54] Martin, W.R., Opioid antagonists. Pharmacological Reviews, 19, 463-521,
1967.
[55] Cuatrecasas, P., Desbuquois, B. and Krug, F., Insulin-receptor interactions in
liver cell membranes. Biochemical and Biophysical Research Communications,
44, 333339, 1971.
[56] Fukuda, K., Kato, S., Mori, K., Nishi, M. and Takeshima, H., Primary
structures and expression from cDNAs of rat opioid receptor δ- and μ-subtypes.
FEBS letters, 327, 311314, 1993.
[57] Knapp, R.J., Malatynska, E., Fang, L., Li, X., Babin, E., Nguyen, M., Santoro,
G., Varga. E.V., Hruby, V.J. and Roeske, W.R., Identification of a human δ
opioid receptor: Cloning and expression. Life Sciences, 54, PL463469, 1994.
[58] Stevens, C., Opioid research in amphibians: A unique perspective on
mechanisms of opioid analgesia and the evolution of opioid receptors. Reviews
in Analgesia, 7, 6982, 2003.
[59] Vanderah, T., Takemori, A.E., Sultana, M., Portoghese, P.S., Mosberg, H.I.,
Hruby, V.J., Haaseth, R.C., Matsunaga, T.O. and Porreca, F., Interaction of
[D-Pen2,D-Pen5]enkephalin and [D-Ala2,Glu4]deltorphin with δ-opioid
receptor subtypes in vivo. European Journal of Pharmacology, 252, 133137,
1994.[60] Portoghese, P.S., Sultana, M., Nagase, H. and Takemori, A.E., A highly
selective δ1-opioid receptor antagonist: 7-benzylidenenaltrexone. European
Journal of Pharmacology, 218, 195196, 1992.
[61] Jiang, Q., Takemori, A.E., Sultana, M., Portoghese, P.S., Bowen, W.D.,
Mosberg, H.I. and Porreca, F., Differential antagonism of opioid δ
antinociception by [D-Ala2,Leu5,Cys6]enkephalin and naltrindole
5'-isothiocyanate: Evidence for δ receptor subtypes. Journal of Pharmacology
and Experimental Therapeutics, 257, 10691075, 1991.
[62] Nishi, M., Takeshima, H., Fukuda, K., Kato, S. and Mori, K., Tumors and
aging: the influence of age-associated immune changes upon tumor growth
and spread. FEBS Letters, 330, 7780, 1993.
[63] Chen, Y., Mestek, A., Liu, J. and Yu, L., Molecular cloning of a rat κ opioid
receptor reveals sequence similarities to the μ and δ opioid receptors.
Biochemical Journal, 295, 625628, 1993.
[64] Meng, F., Xie, G.X., Thompson, R.C., Mansour, A., Goldstein, A., Watson, S.J.,
and Akil, H., Cloning and pharmacological characterization of a rat κ opioid
receptor. Proceeding of the National Academy of Sciences of the United States
of America, 90, 99549958, 1993.
[65] Li, S., Zhu, J., Chen, C., Chen, Y.W., Deriel, J.K., Ashby, B., and Liu-Chen,
L.Y., Molecular cloning and expression of a rat κ opioid receptor. Biochemical
Journal, 295, 629633, 1993.
[66] Yasuda, K., Raynor, K., Kong, H., Breder, C.D., Takeda, J., Reisine, T. and
Bell, G.I., Cloning and functional comparison of and opioid receptors from
mouse brain. Proceeding of the National Academy of Sciences of the United
States of America, 90, 67366740, 1993.[67] Nishi, M., Takeshima, H., Mori, M., Nakagawara, K. and Takeuchi, T.,
Structure and chromosomal mapping of genes for the mouse kappa-opioid
receptor and an opioid receptor homologue. Biochemical and biophysical
research communications, 205, 13531357, 1994.
[68] Mansson, E., Bare, L. and Yang, D., Isolation of a human κ opioid receptor
cDNA from placenta. Biochemical and biophysical research communications,
202, 14311437, 1994.
[69] Simonin, F., Gaveriaux-Ruff, C., Befort, K., Matthes, H., Lannes, B.,
Micheletti, G., Mattei, M., Charron, G., Bloch, B., and Kieffer, B., κ-opioid
receptor in humans: cDNA and genomic cloning, chromosomal assignment,
functional expression, pharmacology, and expression pattern in the central
nervous system. Proceeding of the National Academy of Sciences of the United
States of America, 92, 70067010, 1995.
[70] Zhu, J., Chen, C., Xue, J.C., Kunapuli, S., DeRiel, J.K. and Liu-Chen, L.Y.,
Cloning of a human κ opioid receptor from the brain.Life Sciences, 56,
PL201207, 1995.
[71] Xie, G.X., Meng, F., Mansour, A., Thompson, R.C., Hoversten, M.T.,
Goldstein, A., Watson, S.J., and Akil, H., Primary structure and functional
expression of a Guinea pig opioid (dynorphin) receptor. Proceeding of the
National Academy of Sciences of the United States of America, 91, 37793783,
1994.
[72] Akil, H. and Watson, S.J., Cloning of kappa opioid receptors: functional
significance and future directions. Progress in Brain Research, 100, 8186,
1994.
[73] Cadet, P., Mantione, K.J. and Stefano, G.B., Molecular identification andfunctional expression of μ3, a novel alternatively spliced variantof the human
μ opiate receptor gene. The Journal of Immunology, 170, 51185123, 2003.
[74] Stefano, G.B., Endogenous morphine: A role in wellness medicine. Medical
science monitor, 10, ED5, 2004.
[75] Wang, J.B., Imai, Y., Eppler, C.M., Gregor, P., Spivak, C.E. and Uhl, G.R., μ
opiate receptor: cDNA cloning and expression. Proceeding of the National
Academy of Sciences of the United States of America, 90, 1023010234, 1993.
[76] Thompson, R.C., Mansour, A., Akil, H. and Watson, S.J., Cloning and
pharmacological characterization of a rat μ opioid receptor. Neuron, 11,
903913, 1993.
[77] Minami, M., Onogi, T., Toya, T., Katao, Y., Hosoi, Y., Maekawa, K.,
Katsumatam S., Yabuuchi, K. and Satoh, M., Molecular cloning and in situ
hybridization histochemistry for rat μ-opioid receptor. Neuroscience research,
18, 315322, 1994.
[78] Bunzow, J.R., Zhang, G., Bouvier, C., Saez, C., Ronnekleiv, O.K., Kelly, M.J.
and Grandy, D.K., Characterization and distribution of a cloned rat mu-opioid
receptor. Journal of neurochemistry, 64, 1424, 1995.
[79] Min, B.H., Augustin, L.B., Felsheim, R.F., Fuchs, J.A. and Loh, H.H.,
Genomic structure and analysis of promoter sequence of a mouse μ opioid
receptor gene. Proceeding of the National Academy of Sciences of the United
States of America, 91, 90819085, 1994.
[80] Wang, J.B., Johnson, P.S., Persico, A.M., Hawkins, A.L., Griffin, C.A. and Uhl,
G.R., Human μ opiate receptor. cDNA and genomic clones, pharmacologic
characterization and chromosomal assignment. FEBS Letters, 338, 217222,
1994.[81] Pampusch, M.S., Osinski, M.A., Brown, D.R. and Murtaugh, M.P., The
porcine μ opioid receptor : Molecular cloning and mRNA distribution in
lymphoid tissues. Journal of neuroimmunology, 90, 192198, 1998.
[82] Onoprishvili, I., Andria, M.L., Vilim, F.S., Hiller, J.M. and Simon, E.J., The
bovine μ-opioid receptor: Cloning of cDNA and pharmacological
characterization of the receptor expressed in mammalian cells. Molecular
Brain Research, 73, 129137, 1999.
[83] Darlison, M.G., Greten, F.R., Harvey, R.J., Kreienkamp, H.J., Stuhmer, T.,
Zwiers, H., Lederis, K., and Richter, D., Opioid receptors from a lower
vertebrate (Catostomus commersoni): Sequence, pharmacology, coupling to a
G-protein-gated inward-rectifying potassium channel (GIRK1), and evolution.
Proceeding of the National Academy of Sciences of the United States of
America, 94, 82148219, 1997.
[84] Barrallo, A., Gonzalez-Sarmiento, R., Alvar, F. and Rodriguez, R.E., ZFOR2, a
new opioid receptor-like gene from the teleost zebrafish (Danio rerio).
Molecular Brain Research, 84, 16, 2000.
[85] K ′Alm′An, M., The chemistry of the opioid receptor binding sites, Journal of
Peptide Science, 9, 333353, 2003.
[86] Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox,
B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M. and
Miyano, M., Crystal structure of rhodopsin: A G protein-coupled receptor.
Science, 289, 739745, 2000.
[87] Schwartz, T.W., Locating ligand-binding sites in 7TM receptors by protein
engineering. Current opinion in biotechnology, 5, 434444, 1994.
[88] Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox,B.A., Trong, I.L., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M. and
Miyano, M., Crystal structure of rhodopsin: A G protein-coupled receptor.
Science, 289, 739–745, 2000.
[89] Connor, M. and Christie, M.D., Opioid receptor signalling mechanisms.
Clinical and Experimental Pharmacology and Physiology, 26, 493499, 1999.
[90] Salamon, Z., Cowell, S., Varga, E., Yamamura, H.I., Hruby, V.J. and Tollin, G.,
Plasmon resonance studies of agonist/antagonist binding to the human δ-opioid
receptor: New structural insights into receptor-ligand interactions. Biophysical
Journal, 79, 24632474, 2000.
[91] Salamon, Z., Hruby, V.J., Tollin, G. and Cowell, S., Binding of
agonists/antagonists and inverse agonists to the human δ-opioid receptor
produces distinctly different conformational states distinguishable by
plasmon-waveguide resonance spectroscopy. Journal of Peptide Research, 60,
322328, 2002.
[92] Hamm, H.E., The many faces of G protein signaling. Journal of Biological
Chemistry, 273, 669672, 1998.
[93] Birnbaumer, L., Receptor-to-effector signaling through G proteins: Roles for
βγ dimers as well as α subunits. Cell, 71, 10691072, 1992.
[94] Teschemacher, H., Atypical opioid peptides. Handbook of experimental
pharmacology, 104, 499528, 1993.
[95] Hollt, V., Opioid peptide processing and receptor selectivity. Annual Review of
Pharmacology and Toxicology, 26, 5977, 1986.
[96] Nakanishi, S., Inoue, A., Kita, T., Nakamura, M., Chang, A.C., Cohen, S.N.
and Numa, S., Nucleotide sequence of cloned cDNA for bovinecorticotropin-β-lipotropin precursor. Nature, 278, 423427, 1979.
[97] Corbett, A.D., Paterson, S.J. and Kosterlitz, H.W. Selectivity of ligands for
opioid receptors. Handbook of experimental pharmacology, 104, 645679,
1993.
[98] Goldstein, A., Tachibana, S., Lowney, L.I., Hunkapiller, M. and Hood, L.
Dynorphin-(1-13), an extraordinarily potent opioid peptide. Proceedings of the
National Academy of Sciences of the United States of America,76, 66666670,
1979.
[99] Goldstein, A., Fischli, W., Lowney, L.I., Hunkapiller, M. and Hood, L.,
Porcine pituitary dynorphin: Complete amino acid sequence of the biologically
active heptadecapeptide. Proceedings of the National Academy of Sciences of
the United States of America, 78, 72197223, 1981.
[100] Nyberg, F., Sanderson, K. and Glamsta, E.L., The hemorphins: A new class of
opioid peptides derived from the blood protein hemoglobin. Biopolymers, 43,
147156, 1997.
[101] Zhao, Q., Garreau, I., Sannier, F. and Piot, J.M., Opioid peptides derived from
hemoglobin: Hemorphins. Biopolymers, 43, 7598, 1997.
[102] Zioudrou, C., Streaty, R.A., Klee and W.A., Opioid peptides derived from
food proteins. The exorphins. Journal of Biological Chemistry, 254,
24462449, 1979.
[103]Brantl, V., Teschemacher, H., Henschen, A. and Lottspeich, F., Novel opioid
peptides derived from casein (beta-casomorphins). I. Isolation from bovine
casein peptone. Hoppe Seylers Z Physiol Chem, 360, 12111216, 1979.
[104]Meisel, H., Biochemical properties of regulatory peptides derived from milk
proteins. Biopolymers, 43, 119128, 1997.[105]Kampa, M., Loukas, S., Hatzoglou, A., Martin, P., Martin, P.M. and Castanas,
E., Identification of a novel opioid peptide (Tyr-Val-Pro-Phe-Pro) derived from
human αs1-casein (αs1-casomorphin and αs1-casomorphin amide).
Biochemical Journal, 319, 903908, 1996.
[106]Kampa, M., Bakogeorgou, E., Hatzoglou, A., Damianaki, A., Martin, P.M. and
Castanas, E., Opioid alkaloids and casomorphin peptides decrease the
proliferation of prostatic cancer cell lines (LNCaP, PC3 and DU145) through a
partial interaction with opioid receptors. European Journal of Pharmacology,
335, 255265, 1997.
[107] Nyberg, F., Sanderson, K. and Glamsta, E.L. The hemorphins: A new class of
opioid peptides derived from the blood protein hemoglobin. Biopolymers, 43,
147156, 1997.
[108]Horvath, A. and Kastin, A.J., Evidence for presence of Tyr-MIF-1
(Tyr-Pro-Leu-Gly-NH2) in human brain cortex. International journal of
peptide and protein research, 36, 281284, 1990.
[109] Erchegyi, J., Kastin, A.J. and Zadina, J.E., Isolation of a novel tetrapeptide
with opiate and antiopiate activity from human brain cortex:
Tyr-Pro-Trp-Gly-NH2 (Tyr-W-MIF-1). Peptides, 13, 623631, 1992.
[110]Hackler, L., Kastin, A.J., Erchegyi, J. anf Zadina, J.E., Isolation of
Tyr-W-MIF-1 from bovine hypothalami. Neuropeptides, 24, 159164, 1993.
[111] Kosterlitz, H.W. and Watt, A.J., Kinetic parameters of narcotic agonists and
antagonists with particular reference to nallylnoroxymorphone (naloxone).
British Journal of Pharmacology and Chemotherapy, 33, 266276, 1968.
[112] Hruby, V.J. and Gehring, C.A., Recent developments in the design of receptor
specific opioid peptides. Medicinal Research Reviews, 9, 343401, 1989.[113]Schwyzer, R., ACTH: A short introductory review. Annals of the New York
Academy of Sciences, 297, 326, 1977.
[114]Ghose, A.K. and Wendoloski, J.J., Pharmacophore modelling: Methods,
experimental verification and applications. Perspectives in Drug Discovery
and Design, 9-11, 253271, 1998.
[115]Ehrlich, P., ber den jetzigen Stand der Chemotherapie. Chem. Ber., 42,
1747, 1909.
[116] Gund, P., Pharmacophoric pattern searching and receptor mapping. Annual
Reports in Medicinal Chemistry, 14, 299308, 1979.
[117] Ghose, A.K., Logan, M.E., Treasurywala, A.M., Wang, H., Wahl, R.C.,
Tomczuk, B.E., Gowravaram, M.R., Jaeger, E.P. and Wendoloski, J.J.,
Determination of pharmacophoric geometry for collagenase inhibitors using a
novel computational method and its verification using molecular dynamics,
NMR and X-ray crystallography. Journal of the American Chemical Society,
17, 46714682, 1995.
[118] Beckett, A.H. and Casy, A.F., Synthetic analgesics: Stereochemical
considerations. The Journal of pharmacy and pharmacology, 6, 9861001,
1954.
[119] Blumberg, H., Dayton, H.B. and Wolf, P.S., Counteraction of narcotic
antagonist analgesics by the narcotic antagonist naloxone. Proceedings of the
Society for Experimental Biology and Medicine, 123, 755758, 1966.
[120] Pert, C.B. and Snyder, S.H., Opiate receptor: Demonstration in nervous tissue.
Science, 179, 10111014, 1973.
[121]Terenius, L., Stereospecific interaction between narcotic analgesics and a
synaptic plasm a membrane fraction of rat cerebral cortex. Actapharmacologica et toxicological, 32, 317320, 1973.
[122]Simon, E.J., Hiller, J.M. and Edelman, I., Stereospecific binding of the potent
narcotic analgesic [3H]etorphine to rat-brain homogenate. Proceeding of the
National Academy of Sciences of the United States of America, 70, 19471949,
1973.
[123]Dondio, G., Ronzoni, S., Eggleston, D.S., Artico, M., Petrillo, P., Petrone, G.,
Visentin, L., Farina, C., Vecchietti, V. and Clarke, G.D., Discovery of a novel
class of substituted pyrrolooctahydroisoquinolines aspotent and selective δ
opioidagonists, based on an extension of the message-address concept. Journal
of Medicinal Chemistry, 40, 31923198, 1997.
[124]Huang, P., Kim, S. and Loew, G., Development of a common 3D
pharmacophore for δ -opioid recognition from peptides and non-peptides
using a novel computer program. Journal of Computer-Aided Molecular
Design, 11, 2128, 1997.
[125] Schiller, P.W., Weltrowska, G., Nguyen, T.M., Willes, B.C., Chung, N.N. and
Lemieux, C., TIPP[Ψ]: A highly potent and stable pseudopeptide δ ppioid
receptor antagonist with extraordinary δ selectivity. Journal of Medicinal
Chemistry, 36, 31823187, 1993.
[126]Coop, A. and Jacobson, A.E., The LMC δ opioid recognition pharmacophore:
Comparison of SNC80 and oxymorphindole. Bioorganic & Medicinal
Chemistry Letters, 9, 357362, 1999.
[127] Filizola, M., Villar, H.O. and Loew, G.H., Differentiation of δ, μ, and κ opioid
receptor agonists based on pharmacophore development and computed
physicochemical properties. Journal of Computer-Aided Molecular Design, 15,
297307, 2001.[128]Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S.
and Karplus, M., CHARMM: A program for macromolecular energy,
minimization, and dynamics calculations. Journal of Computational Chemistry,
4, 187217, 1983.
[129] Temussi, P.A., Picone, D., Castiglione-Morelli, M.A., Motta, A. and Tancredi,
T., Bioactive conformation of linear peptides in solution: An elusive goal.
Biopolymers, 28, 91107, 1989.
[130]Karle, I.L., Karle, J., Mastropaolo, D., Camerman, A. and Camerman, N.,
[Leu5]enkepalin: Four crystallizing conformers with extended backbones that
form an antiparallel -sheet. Acta Crystallogr, B39, 625637, 1983.
[131] Smith, D. and Griffin, J.F., Conformation of [Leu5]enkephalin from X-ray
diffraction: Features important for recognition at opiate receptor. Science, 199,
12141216, 1978.
[132]Aubry, A., Birlirakis, N., Sakarellos-Daitsiotis, M., Sakarellos, C. and
Marraud, M., A crystal molecular conformation of leucine-enkephalin related
to the morphine molecule. Biopolymers, 28, 2740, 1989.
[133]Doi, M., Tanaka, M., Ishida, T. , Inoue M., Fujiwara T., Tomita K., Kimura T.,
Sakakibara S. and Sheldrick G.M., Crystal structures of [Met5] and
[(4-bromo)Phe4, Met5]enkephalins: Formation of a dimeric antiparallel
structure. Japanese Biochemical Society, 101, 485490, 1987.
[134] Deschamps, J.R., The role of crystallography in drug design. AAPS Journal, 7,
E813E819, 2005.
[135] Griffin, J.F., Langs, D.A., Smith,G.D., Blundell, T.L., Tickle, I.J. and
Bedarkar, S., The crystal-structure of [Met5]enkephalin and a third form of
[Leu5]enkephalin: Observations of a novel pleated -sheet. Proceeding of theNational Academy of Sciences of the United States of America, 83, 32723276,
1986.
[136]Mastropaolo, D., Camerman, A. and Camerman, N., Crystal structure of
methionine enkephalin. Biochemical and Biophysical Research
Communications, 134, 698703, 1986.
[137] Ishida, T., Kenmotsu, M., Mino, Y., Inoue, M., Fujiwara, T., Tomita, K.,
Kimura, T. and Sakakibara, S., X-ray diffraction studies of enkephalins.
Biochemical Journal, 218, 677689, 1984.
[138]Doi, M., Tanaka, M., Ishida, T., Inoue, M., Fujiwara, T., Tomita, K., Kimura,
T., Sakakibara, S. and Sheldrick, G.M., Crystal structures of [Met5] and
[(4-Bromo)Phe4, Met5]: Formation of a dimeric antiparallel β-structure. The
Journal of Biochemistry, 101, 485490, 1987.
[139]Mastropaolo, D., Camerman ,A., Ma, L.Y. and Camerman, N., Crystal
structure of an extended-conformation leucine-enkephalin dimer monohydrate.
Life Sciences, 40, 19951999, 1987.
[140] Karle, I.L., Karle, J., Mastropaolo, D., Camerman, A. and Camerman, N.,
[Leu5]enkephalin: Four cocrystallizing conformers with extended backbones
that form an antipapallel β-sheet. Acta Crystallographica B, 39, 625637,
1983.
[141]Smith, D. and Griffin, J.F., Conformation of [Leu5]enkephalin from X-ray
diffraction: Features important for recognition at opiate receptor. Science, 199,
12141216, 1978.
[142] Porreca, F., Bilsky, E.J., Raffa, R.B. and Lai, J., Pharmacological
characterization of δ- and κ-receptors. In, Tseng, L.F. (ed), The pharmacology
of opioid peptides. Harwood Academic Publishers, Germany, pp.219248,1995.
[143] Lindahl, E., Hess, B. and van der Spoel, D., GROMACS 3.0: A package for
molecular simulation and trajectory analysis. Journal of Molecular Modeling,
7, 306317, 2001.
[144] Scott, W.R.P., Huenenberger, P., Tironi, I., Mark, A., Billeter, S., Fennen, J.,
Torda, A., Huber, T., Krueger, P. and van Gunsteren, W., The GROMOS
Biomolecular Simulation Program Package. Journal of Physical Chemistry A,
103, 35963607, 1999.
[145] Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Dinola, A. and Haak,
J.R., Molecular dynamics with coupling to an external bath. Journal of
Chemical Physics, 81, 36843690, 1984.
[146]Darden, T., York, D. and Pedersen, L., Particle mesh Ewald: An N log(N)
method for Ewald sums in large systems. Journal of Chemical Physics, 98,
1008910092, 1993.
[147]Dudowicz, J., Freed, K.F. and Shen, M.Y., Hydration structure of
met-enkephalin: A molecular dynamics study, Journal of Chemical Physics,
118, 19891995, 2003.
[148]Yoneda, S., Kitamura, K., Doi, M., Inoue, M. and Ishida, T., Importance of
folded monomer and extended antiparallel dimmer structures as enkephalin
active conformation: Molecular dynamics simulations of [Met5]enkephalin in
water. Federation of European Biochemical Societies Letters, 239, 271275,
1988.
[149] Li, C.H., Beta endorphin. Cell, 31, 504505, 1982.
[150] Goldstein, A., Tachibana, S., Lowney, L.I., Hunkapillar, M. and Hood, L.,
Dynorphin (1-13) an extraordinarily potent opioid peptide. Proceeding of theNational Academy of Sciences of the United States of America, 76, 66666670,
1979.
[151] Karle, I.L., Karle, J., Mastropaolo, D., Camerman, A. and Camerman, N.,
[Leu5]enkephalin: Four cocrystallizing conformers with extended backbones
that form an antiparallel β-sheet. Acta Crystallographica Section B: Structural
Science, 39, 625637, 1983.
[152]Khaled, M.A., Long, M.M., Thompson, W.D., Bradley, R.J., Brown, G.B. and
Urry, D.W., Conformational states of enkephalins in solution. Biochemical and
Biophysical Research Communications, 76, 224231, 1977.
[153] Stimson, E.R., Meinwald, Y.C. and Scheraga, H.A., Solution conformation of
enkephalin: A nuclear magnetic resonance study of 13C-enriched carbonyl
carbons in [Leu5]enkephalin. Biochemistry, 18, 16611671, 1979.
[154]Gupta, G., Sarma, M.H. and Dhingra, M.M., NOE data at 500 MHz reveal the
proximity of phenyl and tyrosine rings in enkephalin. Federation of European
Biochemical Societies Letters, 198, 245250, 1986.
[155]Abdali, S., Jensen, M.O. and Bohr, H.J., Energy levels and quantum states of
[Leu5]enkephalin conformations based on theoretical and experimental
investigations. Journal of Physics: Condensed Matter, 15, S1853S1860,
2003.
[156] Abdali, S., Jalkanen, K.J., Cao, X. , Nafie, L.A. and Bohr, H., Conformational
determination of [Leu5]enkephalin based on theoretical and experimental VA
and VCD spectral analyses. Physical Chemistry and Chemical Physics, 6,
24342439, 2004.
[157] Smith, P.E. and Pettitt, B.M., Modeling solvent in biomolecular systems,
Journal of Physical Chemistry, 98, 97009711, 1994.National Academy of Sciences of the United States of America, 76, 66666670,
1979.
[151] Karle, I.L., Karle, J., Mastropaolo, D., Camerman, A. and Camerman, N.,
[Leu5]enkephalin: Four cocrystallizing conformers with extended backbones
that form an antiparallel β-sheet. Acta Crystallographica Section B: Structural
Science, 39, 625637, 1983.
[152]Khaled, M.A., Long, M.M., Thompson, W.D., Bradley, R.J., Brown, G.B. and
Urry, D.W., Conformational states of enkephalins in solution. Biochemical and
Biophysical Research Communications, 76, 224231, 1977.
[153] Stimson, E.R., Meinwald, Y.C. and Scheraga, H.A., Solution conformation of
enkephalin: A nuclear magnetic resonance study of 13C-enriched carbonyl
carbons in [Leu5]enkephalin. Biochemistry, 18, 16611671, 1979.
[154]Gupta, G., Sarma, M.H. and Dhingra, M.M., NOE data at 500 MHz reveal the
proximity of phenyl and tyrosine rings in enkephalin. Federation of European
Biochemical Societies Letters, 198, 245250, 1986.
[155]Abdali, S., Jensen, M.O. and Bohr, H.J., Energy levels and quantum states of
[Leu5]enkephalin conformations based on theoretical and experimental
investigations. Journal of Physics: Condensed Matter, 15, S1853S1860,
2003.
[156] Abdali, S., Jalkanen, K.J., Cao, X. , Nafie, L.A. and Bohr, H., Conformational
determination of [Leu5]enkephalin based on theoretical and experimental VA
and VCD spectral analyses. Physical Chemistry and Chemical Physics, 6,
24342439, 2004.
[157] Smith, P.E. and Pettitt, B.M., Modeling solvent in biomolecular systems,
Journal of Physical Chemistry, 98, 97009711, 1994.[158] Van der Spoel, D. and Berendsen, H.J., Molecular dynamics simulations of
Leu-enkephalin in water and DMSO. Biophysical Journal, 72, 20322041,
1997.
[159] Nielsen, B.G., Jensen, M.O. and Bohr, H.G., The probability distribution of
side-chain conformations in [Leu5] and [Met5]enkephalin determines the
potency and selectivity to μ and δ opiate receptors. Biopolymers, 71, 577592,
2003.
[160] Karvounis, G., Nerukh, D. and Glen, R.C., Water network dynamics at the
critical moment of the peptide's β turn formation: A molecular dynamics study.
Journal of Chemical Physics, 121, 49254935, 2004.
[161]Dolle, R.E., Machaut, M., Martinez-Teipel, B., Belanger, S., Cassel, J.A.,
Stabley, G.J., Graczyk, T.M. and DeHaven, R.N.,
(4-Carboxamido)phenylalanine is a surrogate for tyrosine in opioid receptor
peptide ligands. Bioorganic & Medicinal Chemistry Letters, 14, 35453548,
2004.
[162]Marrone, T.J., Briggs, J.M. and McCammon, J.A., Structure-based drug
design: Computational advances. Annual Reviews Pharmacology and
Toxicology, 37, 7190, 1997.
[163]Hansson, T., Oostenbrink, C. and van Gunsteren, W., Molecular dynamics
simulations. Current Opinion in Structural Biology, 12, 190196, 2002.
[164]Karplus, M. and McCammon, J.A., Molecular dynamics simulations of
biomolecules. Nature Structural & Molecular Biology, 9, 646652, 2002.
[165]Schuettelkopf, A.W. and van Aalten, D.M.F., PRODRG: A tool for
high-throughput crystallography of protein-ligand complexes. Acta
Crystallographica Section D: Biological Crystallography, 60, 13551363,2004.
[166]Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F. and Hermans, J., In
Intermolecular Forces, Pullman, B., Ed., Reidel, Dordrecht, Holland, pp.
331342, 1981.
[167]Aburi, M. and Smith, P.E., A conformational analysis of leucine enkephalin as
a function of pH. Biopolymers, 64, 177188, 2002.
[168]Khaled, M.A., Long, M.M., Thompson, W.D., Bradley, R.J., Brown, G.B. and
Urry, D.W., Conformational states of enkephalins in solution. Biochemical and
Biophysical Research Communications, 76, 224231, 1977.
[169]Stimson, E.R., Meinwald, Y.C. and Scheraga, H.A., Solution conformational
of enkephalin: Nuclear magnetic resonance study of C13 enriched carbonyl
carbons in [Leu5]-enkephalin. Biochemistry, 18, 16611671, 1979.
[170]Gupta, G., Sarma, M.H. and Dhingra, M.M., Noe data at 500 MHz reveal the
proximity of phenyl and tyrosine rings in enkephalin. Federation of European
Biochemical Societies Letters, 198, 245250, 1986.
[171]van der Spoel, D. and Berendsen, H.J. , Molecular dynamics simulations of
Leu-enkephalin in water and DMSO. Biophysical Journal, 72, 20322041,
1997.
[172]Nielsen, B.G., Jensen, M.O. and Bohr, H.G., The probability distribution of
side-chain conformations in [Leu5] and [Met5]enkephalin determines the
potency and selectivity to μ and δ opiate receptors. Biopolymers, 71, 577592,
2003.
[173]Karvounis, G., Nerukh, D. and Glen, R.C., Water network dynamics at the
critical moment of a peptide's β-turn formation, A molecular dynamics study.
Journal of Chemical Physics, 121, 49254935, 2004.[174]Wang, Y. and Kuczera, K., Molecular dynamics simulations of cyclic and
linear DPDPE: Influence of the disulfide bond on peptide flexibility. Journal
of Physical Chemistry, 100, 25552563, 1996.
[175]Mosberg, H.I. and Fowler, C.B., Development and validation of opioid
ligand-receptor interaction models: The structural basis of vs. selectivity.
Journal of Peptide Research, 60, 329335, 2002.
[176]Przydzial, M.J., Pogozheva, I.D., Bosse, K.E., Andrews, S.M., Tharp, T.A.,
Traynor, J.R. and Mosberg, H.I., Roles of residues 3 and 4 in cyclic
tetrapeptide ligand recognition by the -opioid receptor. Journal of Peptide
Research, 65, 333342, 2005.
[177]Aldrich, J.V. and Vigil-Cruz, S.C., Narcotic Analgesics. In Burgers Medicinal
Chemistry and Drug Discovery, Abraham, D., Ed., John Wiley & Sons: New
York, 6, 329, 2003.
[178]Wollemann, M. and Benyhe, S., Non-opioid actions of opioid peptides. Life
Sciences, 75, 257270, 2004.
[179]Nyberg, F., Sanderson, K. and Glamsta, E.L., The hemorphins: A new class of
opioid peptides derived from the blood protein hemoglobin. Biopolymers, 43,
14756, 1997.
[180]Zhao, Q., Garreau, I., Sannier, F. and Piot, J. M., Opioid peptides derived from
hemoglobin: Hemorphins. Biopolymers, 43, 7598, 1997.
[181]Zioudrou, C., Streaty, R.A. and Klee, W.A., Opioid peptides derived from
food proteins: The exorphins. Journal of Biological Chemistry, 254,
24462449, 1979.
[182]Brantl, V., Teschemacher, H., Henschen, A. and Lottspeich, F., Novel opioid
peptides derived from casein (-casomorphins). I. Isolation from bovine caseinpeptone. Hoppe-Seylers Zeitschrift Physiologische Chemie, 360, 12111216,
1979.
[183]Kampa, M., Loukas, S., Hatzoglou, A., Martin, P., Martin, P.M. and Castanas,
E., Identification of a novel opioid peptide (Tyr-Val-Pro-Phe-Pro) derived from
human αs1 -casein (αs1-casomorphin, and αs1-casomorphin amide).
Biochemical Journal, 319, 903908, 1996.
[184]Kampa, M., Bakogeorgou, E., Hatzoglou, A., Damianaki, A., Martin, P.M. and
Castanas, E., Opioid alkaloids and casomorphin peptides decrease the
proliferation of prostatic cancer cell lines (LNCaP, PC3 and DU145) through a
partial interaction with opioid receptors. European Journal of Pharmacology,
335, 255265, 1997.
[185]Meisel, H., Biochemical properties of regulator peptides derived from milk
proteins. Biopolymers, 43, 119128, 1997.
[186]Zagon, I.S., McLaughlin, P.J., Goodman, S.R. and Rhodes, R.E., Opioid
receptors and endogenous opioids in diverse human and animal cancers.
Journal of the National Cancer Institute, 79, 10591065, 1987.
[187]Hatzoglou, A., Gravanis, A., Margioris, A.N., Zoumakis, E. and Castanas, E.,
Identification and characterization of opioid-binding sites present in the
Ishikawa human endometrial adenocarcinoma cell line. Journal of Clinical
Endocrinology & Metabolism, 80, 418423, 1995.
[188]Chatikhine, V.A., Chevrier, A., Chauzy, C., Duval, C., d’Anjou, J., Girard, N.
and Delpech, B., Expression of opioid peptides in cells and stroma of human
breast cancer and adenofibromas. Cancer Letters, 77, 5156, 1994.
[189]Francois, A., Chatikhine, V.A., Chevallier, B., Ren, G.S., Berry, M., Chevrier,
A. and Delpech, B., Neuroendocrine primary small cell carcinoma of thebreast: Report of a case and review of the literature. American Journal of
Clinical Oncology, 18, 133138, 1995.
[190]Maneckjee, R., Biswas, R. and Vonderhaar, B.K., Binding of opioids to human
MCF-7 breast cancer cells and their effects on growth. Cancer Research, 50,
22342238, 1990.
[191]Hatzoglou, A., Bakogeorgou, E. and Castanas, E. The antiproliferative effect
of opioid receptor agonists on the T47D human breast cancer cell line, is
partially mediated through opioid receptors. European Journal of
Pharmacology, 296, 199207, 1996.
[192]Shahabi, N.A. and Sharp, B.M., Antiproliferative effects of δ opioids on
highly purified CD4+ and CD8+ murine T cells. Journal of pharmacology and
experimental therapeutics, 273, 11051113, 1995.
[193]Zagon, I.S., Hytrek, S.D. and McLaughlin, P., Opioid growth factor tonically
inhibits human colon cancer cell proliferation in tissue culture. American
Journal of Physiology, 271, R511R518, 1996.
[194]McLaughlin, P.J., Levin, R.J. and Zagon, I.S., Regulation of human head and
neck squamous cell carcinoma growth in tissue culture by opioid growth factor.
International Journal of Oncology, 14, 991998, 1999.
[195]Zagon, I.S., Smith, J.P., Conter, R. and McLaughlin, P.J., Identification and
characterization of opioid growth factor receptor in human pancreatic
adenocarcinoma. International Journal of Molecular Medicine, 5, 7784,
2000.
[196]Millan, M.J., κ-opioid receptors and analgesia. Trends in Pharmacological
Sciences, 11, 7076, 1990.
[197] Soukara, S., Maier, C.A., Predoiu, U., Ehret, A., Jackisch, R. and Wnsch, B.,Methylated Analogues of Methyl (R)-4-(3,4-Dichlorophenylacetyl)-
3-(pyrrolidin-1-ylmethyl)piperazine-1-carboxylate (GR-89,696) as highly
potent κ receptor agonists: Stereoselective synthesis, opioid-receptor affinity,
receptor selectivity, and functional studies. Journal of Medicinal Chemistry, 44,
28142826, 2001.
[198] Holzgrabe, U. and Brand, W., Mechanism of action of the
diazabicyclononanone-type κ-agonists. Journal of Medicinal Chemistry, 46,
13831389, 2003.
[199] Giardina, G., Clarke, G.D., Grugni, M., Sbacchi, M. and Vecchietti, V., Central
and peripheral analgesic agents: Chemical strategies for limiting brain
penetration in κ-opioid agonists belonging to different chemical classes.
Farmaco, 50, 405418, 1995.
[200] Binder, W. and Walker, J.S., Effect of the peripherally selective κ-opioid
agonist, asimadoline, on adjuvant arthritis. British journal of pharmacology,
124, 647654, 1998.
[201] Machelska, H., Pfluger, M., Weber, W., Piranvisseh-Volk, M., Daubert, J.D.,
Dehaven, R. and Stein, C., Peripheral effects of the κ-opioid agonist EMD
61753 on pain and inflammation in rats and humans. Journal of pharmacology
and experimental therapeutics, 290, 354361, 1999.
[202] Ko, M.C., Butelman, E.R. and Woods, J.H., Activation of peripheral κ opioid
receptors inhibits capsaicin-induced thermal nociception in rhesus monkeys.
Journal of pharmacology and experimental therapeutics, 289, 378385, 1999.
[203] Ko, M.C., Willmont, K.J., Burritt, A., Hruby, V.J. and Woods, J.H., Local
inhibitory effects of dynorphin A (1–17) on capsaicin-induced thermalallodynia in rhesus monkeys. European Journal of Pharmacology, 402, 6976,
2000.
[204] DeHaven-Hudkins, D.L. and Dolle, R.E., Peripherally restricted opioid
agonists as novel analgesic agents. Current Pharmaceutical Design, 10,
743757, 2004.
[205] Johnsen, L.B., Rasmussen, L.K., Petersen, T.E. and Berglund, L.,
Characterization of three types of human αs1-casein mRNA transcripts.
Biochemical Journal, 309, 237242, 1995.
[206] Chang, K.J., Killian, A., Hazum, E., Cuatrecasas, P. and Chang, J.K.,
Morphiceptin (NH4-tyr-pro-phe-pro-COHN2): A potent and specific agonist
for morphine (μ) receptors. Science, 212, 7577, 1981.
[207] Yamazaki, T., Ro, S., Goodman, M., Chung, N.N. and Schiller, P.W., A
topochemical approach to explain morphiceptin bioactivity. Journal of
Medicinal Chemistry, 36, 708719, 1993.
[208] Keller, M., Boissard, C., Patiny, L., Chung, N.N., Lemieux, C., Mutter, M. and
Schiller, P. W., Pseudoproline-containing analogues of morphiceptin and
endomorphin-2: Evidence for a cis Tyr-Pro amide bond in the bioactive
conformation. Journal of Medicinal Chemistry, 44, 38963903, 2001.
[209]Wang, Y. and Kuczera, K., Molecular dynamics simulations of cyclic and
linear DPDPE: Influence of the disulfide bond on peptide flexibility. Journal
of Chemical Physics, 100, 25552560, 1996.
[210] Mosberg, H.I. and Fowler, C.B., Development and validation of opioid
ligand–receptor interaction models: The structural basis of μ vs. δ selectivity.
Journal of Peptide Research, 60, 329335, 2002.
[211] Przydzial, M.J., Pogozheva, I.D., Bosse, K.E., Andrews, S.M., Tharp, T.A.,Traynor, J.R. and Mosberg, H.I., Design of high affinity cyclic pentapeptide
ligands for κ-opioid receptors. Journal of Peptide Research, 65, 333347,
2005.
[212] Dondio, G., Ronzoni, S., Eggleston, D.S., Artico, M., Petrillo, P., Petrone, G.,
Visentin, L., Farina, C., Vecchietti, V. and Clarke, G.D., Discovery of a novel
class of substituted pyrrolooctahydroisoquinolines as potent and selective δ
opioid agonists: Based on an extension of the message-address concept.
Journal of Medicinal Chemistry, 40, 31923198, 1997.
[213] Huang, P., Kim, S. and Loew, G., Development of a common 3D
pharmacophore for opioid recognition from peptides and non-peptides using a
novel computer program. Journal of Computer-Aided Molecular Design, 11,
2128, 1997.
[214] Coop, A. and Jacobson, A.E., The LMC delta opioid recognition
pharmacophore: comparison of SNC80 and oxymorphindole. Bioorganic &
Medicinal Chemistry Letters, 9, 357362, 1999.
[215] Henschen, A., Lottspeich, F., Brantl, V., and Teschemacher, H., Novel opioid
peptides derived from casein (β-casomorphins). II. Structure of active
components from bovine casein peptone. Hoppe-Seyler's Zeitschrift fr
physiologische Chemie, 360, 12171224, 1979.
[216] Chang, K.J., Lillian, A, Hazum, E, Cuatrecasas, P., and Chang, J.K.,
Morphiceptin (NH4-tyr-pro-phe-pro-COHN2): A potent and specific agonist
for morphine (μ) receptors. Science, 212, 7577, 1981.
[217] Brantl, V., Gramsch, C., Lottspeich, F., Mertz, R., Jaeger, K.H. and Herz, A.,
Novel opioid peptides defived from hemoglobin: Hemorphins. European
Journal of Pharmacology, 125, 309310, 1986.[218] Blanchard, S.G., Lee, P.H.K., Pugh. W.W., Hong, J.S., and Chang, K.J.,
Characterization of the binding of a morphine (μ) receptor-specific ligand:
Tyr-Pro-NMePhe-D-Pro-NH2, [3H]-PL17. Molecular pharmacology, 31,
326333, 1987.
[219] Horvath, A. and Kastin, A.J., Isolation of tyrosine-melanocyte-stimulating
hormone release-inhibiting factor 1 from bovine brain tissue. Journal of
Biological Chemistry, 264, 21752179, 1989.
[220] Erchegyi, J., Kastin, A.J., and Zadina, J.E., Isolation of a novel tetrapeptide
with opiate and antiopiate activity from human cortex: Tyr-Pro-Trp-Gly-NH2
(Tyr-WMIF-1). Peptides, 13, 623631, 1992.
[221] Zadina, J.E., Kastin, A.J., Ge, L.J., and Hackler, L., μ, δ and κ opiate receptor
binding of tyr-MIF-1 and of tyr-W-MIF-1, its active fragments, and two potent
analogs. Life Sciences, 55, PL461PL466, 1994.
[222] Yamazaki, T., Ro, S., Goodman, M., Chung, N.N., and Schiller, P.W., A
topochemical approach to explain morphiceptin bioactivity. Journal of
Medicinal Chemistry, 36, 708719, 1993.
[223] Hackler, L., Zadina, J.E., Ge, L.J. and Kastin, A.J., Isolation of relatively large
amounts of endomorphin-1 and endomorphin-2 from human brain cortex.
Peptides, 18, 16351639, 1997.
[224] Terskiy, A., Wannemacher, K.M., Yadav, P.N., Tsai, M., Tian, B. and Howells,
R.D., Search of the human proteome for endomorphin-1 and endomorphin-2
precursor proteins. Life Sciences, 81, 15931601, 2007.
[225] Schwyzer, R., ACTH: A short introductory review. Annals of the New York
Academy of Sciences, 297, 2326, 1977.
[226] Yamazaki, T., Ro, S., Goodman, M., Chung, N.N., and Schiller, P.W., Atopochemical approach to explain morphiceptin bioactivity. Journal of
Medicinal Chemistry, 36, 708719, 1993.
[227] In, Y., Minoura, K., Ohishi, H., Minakata, H., Kamigauchi, M., Sugiura, M.
and Ishida, T., Conformational comparison of μ-selective endomorphin-2 with
its C-terminal free acid in DMSO solution, by 1H NMR spectroscopy and
molecular modeling calculation. Journal of Peptide Research, 58, 399412,
2001.
[228] Fiori, S., Renner, C., Cramer, J., Pegoraro, S. and Moroder, L., Preferred
conformation of endomorphin-1 in aqueous and membrane-mimetic
environments. Journal of Molecular Biology, 291, 163175, 1999.
[229] Podlogar, B.L., Paterlini, G., Ferguson, D.M., Leo, G.C., Demeter, D.A.,
Brown, F.K. and Reitz, A.B., Conformational analysis of the endogenous
μ-opioid agonist endomorphin-1 using NMR spectroscopy and molecular
modeling. FEBS Letters, 439, 1320, 1998
[230] Cowell, S.M., Lee, Y.S., Cain, J.P. and Hruby, V.J., Exploring ramachandran
and chi space: Conformationally constrained amino acids and peptides in the
design of bioactive polypeptide ligands. Current Medicinal Chemistry, 11,
27852798, 2004.
[231] Vanhoof, G., Goossens, F., Meester, I.D., Hendriks, D. and Scharpe, S., Proline
motifs in peptides and their biological processing, The FASEB Journal, 9,
736744, 1995.
[232] Yang, Y.R., Chiu, T.H., and Chen, C.L.. Structure-activity relationships of
naturally occurring and synthetic opioid tetrapeptides acting on locus
coeruleus neurons. European Journal of Pharmacology, 372, 229236, 1999.
[233] Mierke, D.F., No‥ssner, G., Schiller, P.W. and Goodman, M., Morphiceptinanalogs containing 2-aminocyclopentane carboxylic acid as a peptidomimetic
for proline. International Journal of Peptide and Protein Research, 35, 3545,
1990.
[234] Chang, K.J., Killian A., Hazum E., and Cuatrecasas P., Morphiceptin
(Tyr-Pro-Phe-Pro-CONH2): A potent and specific agonist for morphine (μ)
receptors. Science, 212, 7577, 1981.
[235] Chang, K.J., Wei E.T., Killian A., and Chang J.K., Potent morphiceptin
analogs: Structure activity relationships and morphine-like activities. The
Journal of pharmacology and experimental therapeutics, 227, 403408, 1983.
[236] Paterlini, M.G., Avitabile, F., Ostrowski, B.G., Ferguson, D.M. and Portoghese,
P.S., Stereochemical requirements for receptor recognition of the μ-opioid
peptide endomorphin-1. Biophysical Journal, 78, 590599, 2000.
[237] Brent, L., Podlogar, M. Germana. P., Ferguson D.M., Leo G.C., David A.D.,
Brown, F.K. and Reitz A.B., Conformational analysis of the endogenous
μ-opioid agonist endomorphin-1 using NMR spectroscopy and molecular
modeling. FEBS Letters, 439, 1320, 1998.
[238] Iadanza, M., Hltje,M., Ronsisvalle, G., and Hltje, H.D., κ-opioid receptor
model in a phospholipid bilayer: Molecular dynamics simulation. Journal of
Medicinal Chemistry, 45, 48384846, 2002.
[239] Aburi, M. and Smith, P.E., Modeling and simulation of the human δ opioid
receptor. Protein Science, 13, 19972008, 2004.
[240] Zhang, Y., Sham, Y.Y., Rajamani, R.,Gao, J. and Portoghese, P.S., Homology
modeling and molecular dynamics simulations of the mu opioid receptor in a
membrane-aqueous system. ChemBioChem, 6, 853859, 2005.