| 研究生: |
杜瓊莊 Do, Quynh-Trang |
|---|---|
| 論文名稱: |
以組學與液相層析串聯質譜技術解析兒茶酚雌激素誘發的內源性基因毒性 Deciphering Endogenous Genotoxicity Induced by Catechol Estrogens Using Omics and LC-MS/MS Techniques |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 157 |
| 中文關鍵詞: | 兒茶酚雌激素 、點擊探針測序 、液相色譜-串聯質譜 、點擊化學 、定量蛋白質組學 、兒茶酚雌激素誘導的去氧核糖核酸損傷 、兒茶酚雌激素誘導的蛋白質加成物 、脫嘌呤去氧核糖核酸加成物 、穩定去氧核糖核酸加合物 |
| 外文關鍵詞: | Catechol Estrogens, Click Probe-Seq, LC-MS/MS, click chemistry, quantitative proteomics, CE- induced DNA damage, CE- induced protein adducts, depurinating DNA adducts, stable DNA adducts |
| ORCID: | https://orcid.org/0000-0003-2567-598X |
| ResearchGate: | https://www.researchgate.net/profile/Trang-Do-Quynh-2?ev=hdr_xprf |
| 相關次數: | 點閱:356 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雌激素的反應性代謝物兒茶酚雌激素在加成於去氧核糖核酸或蛋白質上後會具有基因毒性,影響基因組的穩定性。儘管了解兒茶酚雌激素加成後會產生毒性,但加成物誘發基因損傷的機制及其對細胞轉化的影響仍然知之甚少。為了解明上述問題,我們運用先進組學與液相色譜-串聯質譜來研究蛋白質和去氧核糖核酸的兒茶酚雌激素加合物。
在第二章中我們開發了一種專門針對兒茶酚雌激素-蛋白質加成物的濃縮工作流程,其中運用了點擊化學並結合定量蛋白質組學,能提高專一性同時抑制背景訊號。我們透過此方法識別並定量了兒茶酚雌激素加成的蛋白質及其加成位點,總共有310個蛋白質和40個兒茶酚雌激素加成位點被識別出來。結果顯示經兒茶酚雌激素處理後細胞中抗壓蛋白量會隨之減少,表明兒茶酚雌激素在促進細胞生存和惡性轉化方面起著雙重作用。
在第三章及第四章中,將用於兒茶酚雌激素-蛋白質加成物的濃縮工作流程運用在研究兒茶酚雌激素-去氧核糖核酸加成物上。我們先透過點擊探針測序進行全基因組圖譜繪製以鑑定兒茶酚雌激素誘導的去氧核糖核酸損傷,並使用液相色譜-串聯質譜和序列分析評估了染色質可及性對兒茶酚雌激素-去氧核糖核酸加成物生成的影響。由全基因組圖譜繪製的結果顯示,兒茶酚雌激素誘導的去氧核糖核酸損傷優先發生在轉錄活躍區域,這些區域對雌激素受體調節的基因調控至關重要。另外還發現了暴露於兒茶酚雌激素下會抑制了去氧核糖核酸修復基因 (如BRCA1和RAD51C) 的轉錄,影響雙鏈斷裂修復同時導致了基因組的不穩定性。染色質的結構被證明可以保護去氧核糖核酸免受兒茶酚雌激素加成,其中鳥嘌呤加成物占大宗而沒有腺嘌呤加合物,表明了組蛋白的包裹限制兒茶酚雌激素對去氧核糖核酸的可及性。
本研究開發的方法為研究兒茶酚雌激素誘導的蛋白質與去氧核糖核酸加合物提供了強而有力的工具,顯著提高了我們對雌激素相關癌症及其基本機制的理解。此外,這些方法還提供了一個平台來研究其他內源性化合物的基因毒性,為內源代謝物誘導的損傷及其對疾病影響的分子機制提供了更廣泛的見解。
Catechol estrogen (CEs), reactive metabolites of estrogen, induce genotoxicity through DNA and protein adduction, leading to genomic instability and impaired cellular processes. Despite the known reactivity of CEs, the mechanism of CE-induced damage and its implications for cellular transformation remain poorly understood. To address these gaps, we employed advanced omics and LC-MS/MS techniques to comprehensively investigate CE-induced protein and DNA adducts.
In the first topic (chapter 2), a click chemistry-based enrichment workflow coupled quantitative proteomics was developed and optimized for targeting CE-protein adducts, achieving enhanced specificity and reduced background noise. The catechol estrogen- adducted proteins and its adducted sites were identified and quantified. A total of 310 protein targets with 40 CE-adducted sites were identified. The results revealed that CE treatment induce downregulated stress-resistant proteins, indicating a dual role of CEs in promoting both cell survival and malignant transformation.
In the second and third topic (chapter 3 and 4), the click chemistry-based enrichment workflow was extended to study CE-induced DNA adducts. A genome-wide mapping approach using click probe-seq was employed to identify CE-induced DNA damage. The effect of chromatin accessibility to CE-DNA adduct formation was also assessed using liquid chromatography- tandem mass spectrometry (LC-MS/MS) and sequence analysis. Genome-wide mapping showed that CE-induced DNA damage preferentially occurs at transcriptional active regions, which are critical for estrogen receptor-mediated gene regulation. CE exposure was also found to suppress the transcription of key DNA repair genes, such as BRCA1 and RAD51C, impairing double-strand break (DSB) repair and leading to genomic instability. Chromatin structure was shown to protect DNA from CE adduction, with guanine adducts being predominant and adenine adducts absent, suggesting that histone wrapping limits DNA accessibility to CEs.
In addition, the methodology developed in this study provide powerful tools for studying catechol estrogens induced protein and DNA adducts, thus significantly improve our understanding of estrogen-related cancers and their underlying mechanisms. Furthermore, these approaches offer a platform to investigate the genotoxicity of other endogenous compounds, giving a way for broader insights into molecular mechanisms of endogenous metabolite-induced damage and its implications for disease.
(1) Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J. R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15-23. DOI: 10.1016/j.breast.2022.08.010 From NLM.
(2) Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D. M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. International journal of cancer 2021, 149 (4), 778-789.
(3) Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians 2021, 71 (3), 209-249. DOI: https://doi.org/10.3322/caac.21660.
(4) Hortobagyi, G. N.; de la Garza Salazar, J.; Pritchard, K.; Amadori, D.; Haidinger, R.; Hudis, C. A.; Khaled, H.; Liu, M.-C.; Martin, M.; Namer, M.; et al. The Global Breast Cancer Burden: Variations in Epidemiology and Survival. Clinical Breast Cancer 2005, 6 (5), 391-401. DOI: https://doi.org/10.3816/CBC.2005.n.043.
(5) Kristensen, V. N.; Børresen-Dale, A. L. Molecular epidemiology of breast cancer: genetic variation in steroid hormone metabolism. Mutation Research/Reviews in Mutation Research 2000, 462 (2), 323-333. DOI: https://doi.org/10.1016/S1383-5742(00)00018-1.
(6) Kang, H.-J.; Kim, S.-W.; Kim, H. J.; Ahn, S.-J.; Bae, J.-Y.; Park, S. K.; Kang, D.; Hirvonen, A.; Choe, K. J.; Noh, D.-Y. Polymorphisms in the estrogen receptor-alpha gene and breast cancer risk. Cancer Letters 2002, 178 (2), 175-180. DOI: https://doi.org/10.1016/S0304-3835(01)00861-8.
(7) Dunning, A. M.; Healey, C. S.; Pharoah, P. D.; Teare, M. D.; Ponder, B. A.; Easton, D. F. A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev 1999, 8 (10), 843-854. From NLM.
(8) Li, S.; Silvestri, V.; Leslie, G.; Rebbeck, T. R.; Neuhausen, S. L.; Hopper, J. L.; Nielsen, H. R.; Lee, A.; Yang, X.; McGuffog, L.; et al. Cancer Risks Associated With <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variants. Journal of Clinical Oncology 2022, 40 (14), 1529-1541. DOI: 10.1200/jco.21.02112.
(9) Savage, K. I.; Matchett, K. B.; Barros, E. M.; Cooper, K. M.; Irwin, G. W.; Gorski, J. J.; Orr, K. S.; Vohhodina, J.; Kavanagh, J. N.; Madden, A. F.; et al. BRCA1 Deficiency Exacerbates Estrogen-Induced DNA Damage and Genomic Instability. Cancer Research 2014, 74 (10), 2773-2784. DOI: 10.1158/0008-5472.Can-13-2611 (acccessed 1/23/2025).
(10) Yang, X.; Song, H.; Leslie, G.; Engel, C.; Hahnen, E.; Auber, B.; Horváth, J.; Kast, K.; Niederacher, D.; Turnbull, C.; et al. Ovarian and Breast Cancer Risks Associated With Pathogenic Variants in RAD51C and RAD51D. JNCI: Journal of the National Cancer Institute 2020, 112 (12), 1242-1250. DOI: 10.1093/jnci/djaa030 (acccessed 1/23/2025).
(11) Foulkes, W. D. The ten genes for breast (and ovarian) cancer susceptibility. Nature Reviews Clinical Oncology 2021, 18 (5), 259-260. DOI: 10.1038/s41571-021-00491-3.
(12) Orrantia-Borunda, E.; Anchondo-Nuñez, P.; Acuña-Aguilar, L. E.; Gómez-Valles, F. O.; Ramírez-Valdespino, C. A. Subtypes of breast cancer. Breast Cancer [Internet] 2022.
(13) Gage, M.; Wattendorf, D.; Henry, L. R. Translational advances regarding hereditary breast cancer syndromes. Journal of Surgical Oncology 2012, 105 (5), 444-451. DOI: https://doi.org/10.1002/jso.21856.
(14) Feigelson, H. S.; Henderson, B. E. Estrogens and breast cancer. Carcinogenesis 1996, 17 (11), 2279-2284.
(15) Dickson, R. B.; Stancel, G. M. Chapter 8: Estrogen receptor-mediated processes in normal and cancer cells. JNCI Monographs 2000, 2000 (27), 135-145.
(16) Preston-Martin, S.; Pike, M. C.; Ross, R. K.; Henderson, B. E. Epidemiologic evidence for the increased cell proliferation model of carcinogenesis. Environmental health perspectives 1993, 101 (suppl 5), 137-138.
(17) Li, J. J.; Li, S. A. Estrogen Carcinogenesis in Hamster Tissues: A Critical Review*. Endocr. Rev. 1990, 11 (4), 524-531. DOI: 10.1210/edrv-11-4-524 (acccessed 8/24/2024).
(18) Bolton, J. L.; Thatcher, G. R. J. Potential Mechanisms of Estrogen Quinone Carcinogenesis. Chemical Research in Toxicology 2008, 21 (1), 93-101. DOI: 10.1021/tx700191p.
(19) Chang, M.; Peng, K.-w.; Kastrati, I.; Overk, C. R.; Qin, Z.-H.; Yao, P.; Bolton, J. L.; Thatcher, G. R. J. Activation of Estrogen Receptor-Mediated Gene Transcription by the Equine Estrogen Metabolite, 4-Methoxyequilenin, in Human Breast Cancer Cells. Endocrinology 2007, 148 (10), 4793-4802. DOI: 10.1210/en.2006-1568 (acccessed 2/5/2025).
(20) Cavalieri, E.; Chakravarti, D.; Guttenplan, J.; Hart, E.; Ingle, J.; Jankowiak, R.; Muti, P.; Rogan, E.; Russo, J.; Santen, R.; et al. Catechol estrogen quinones as initiators of breast and other human cancers: Implications for biomarkers of susceptibility and cancer prevention. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2006, 1766 (1), 63-78. DOI: https://doi.org/10.1016/j.bbcan.2006.03.001.
(21) Yue, W.; Santen, R. J.; Wang, J. P.; Li, Y.; Verderame, M. F.; Bocchinfuso, W. P.; Korach, K. S.; Devanesan, P.; Todorovic, R.; Rogan, E. G.; et al. Genotoxic metabolites of estradiol in breast: potential mechanism of estradiol induced carcinogenesis. The Journal of Steroid Biochemistry and Molecular Biology 2003, 86 (3), 477-486. DOI: https://doi.org/10.1016/S0960-0760(03)00377-7.
(22) Wen, C.; Wu, L.; Fu, L.; Wang, B.; Zhou, H. Unifying mechanism in the initiation of breast cancer by metabolism of estrogen (Review). Mol Med Rep 2017, 16 (2), 1001-1006. DOI: 10.3892/mmr.2017.6738.
(23) Miao, S.; Yang, F.; Wang, Y.; Shao, C.; Zava, D. T.; Ding, Q.; Shi, Y. E. 4-Hydroxy estrogen metabolite, causing genomic instability by attenuating the function of spindle-assembly checkpoint, can serve as a biomarker for breast cancer. Am J Transl Res 2019, 11 (8), 4992-5007. From NLM.
(24) Fussell, K. C.; Udasin, R. G.; Smith, P. J. S.; Gallo, M. A.; Laskin, J. D. Catechol metabolites of endogenous estrogens induce redox cycling and generate reactive oxygen species in breast epithelial cells. Carcinogenesis 2011, 32 (8), 1285-1293. DOI: 10.1093/carcin/bgr109 (acccessed 1/29/2025).
(25) Tripathi, K.; Mani, C.; Somasagara, R. R.; Clark, D. W.; Ananthapur, V.; Vinaya, K.; Palle, K. Detection and evaluation of estrogen DNA-adducts and their carcinogenic effects in cultured human cells using biotinylated estradiol. Molecular Carcinogenesis 2017, 56 (3), 1010-1020. DOI: https://doi.org/10.1002/mc.22566.
(26) Cavalieri, E. L.; Rogan, E. G.; Zahid, M. Critical depurinating DNA adducts: Estrogen adducts in the etiology and prevention of cancer and dopamine adducts in the etiology and prevention of Parkinson's disease. International Journal of Cancer 2017, 141 (6), 1078-1090. DOI: https://doi.org/10.1002/ijc.30728.
(27) Cavalieri, E. L.; Rogan, E. G. Depurinating estrogen-DNA adducts in the etiology and prevention of breast and other human cancers. Future Oncol 2010, 6 (1), 75-91. DOI: 10.2217/fon.09.137 From NLM.
(28) Cavalieri, E.; Rogan, E. The 3,4-Quinones of Estrone and Estradiol Are the Initiators of Cancer whereas Resveratrol and N-acetylcysteine Are the Preventers. Int J Mol Sci 2021, 22 (15). DOI: 10.3390/ijms22158238 From NLM.
(29) Yager, J. D. Mechanisms of estrogen carcinogenesis: The role of E2/E1-quinone metabolites suggests new approaches to preventive intervention--A review. Steroids 2015, 99 (Pt A), 56-60. DOI: 10.1016/j.steroids.2014.08.006 From NLM.
(30) Yue, W.; Santen, R.; Wang, J.-P.; Li, Y.; Verderame, M.; Bocchinfuso, W.; Korach, K.; Devanesan, P.; Todorovic, R.; Rogan, E. G. Genotoxic metabolites of estradiol in breast: potential mechanism of estradiol induced carcinogenesis. The Journal of steroid biochemistry and molecular biology 2003, 86 (3-5), 477-486.
(31) Turan, V.; Sanchez, R.; Li, J.; Li, S.; Reuhl, K.; Thomas, P.; Conney, A.; Gallo, M.; Kauffman, F.; Mesia-Vela, S. The effects of steroidal estrogens in ACI rat mammary carcinogenesis: 17β-estradiol, 2-hydroxyestradiol, 4-hydroxyestradiol, 16α-hydroxyestradiol, and 4-hydroxyestrone. Journal of endocrinology 2004, 183 (1), 91-99.
(32) Yager, J. D.; Davidson, N. E. Estrogen Carcinogenesis in Breast Cancer. New England Journal of Medicine 2006, 354 (3), 270-282. DOI: doi:10.1056/NEJMra050776.
(33) Chen, S. H.; Li, C. W. Detection and Characterization of Catechol Quinone-Derived Protein Adducts Using Biomolecular Mass Spectrometry. Front Chem 2019, 7, 571. DOI: 10.3389/fchem.2019.00571 From NLM.
(34) Ku, M.-C.; Fang, C.-M.; Cheng, J.-T.; Liang, H.-C.; Wang, T.-F.; Wu, C.-H.; Chen, C.-C.; Tai, J.-H.; Chen, S.-H. Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes. Scientific Reports 2016, 6 (1), 28804. DOI: 10.1038/srep28804.
(35) Jen, H.-H.; Kafeenah, H.; Chang, T.-Y.; Lin, Y.-M.; Shan, Y.-S.; Wu, C.-H.; Chen, S.-H. Quantification of the Endogenous Adduction Level on Hemoglobin and Correlation with Albumin Adduction via Proteomics: Multiple Exposure Markers of Catechol Estrogen. Journal of Proteome Research 2021, 20 (9), 4248-4257. DOI: 10.1021/acs.jproteome.1c00097.
(36) Kafeenah, H.; Kuo, C.-M.; Chang, T.-Y.; Jen, H.-H.; Yang, J.-H.; Shen, Y.-S.; Wu, C.-H.; Chen, S.-H. Label-free and de-conjugation-free workflow to simultaneously quantify trace amount of free/conjugated and protein-bound estrogen metabolites in human serum. Analytica Chimica Acta 2022, 1232, 340457. DOI: https://doi.org/10.1016/j.aca.2022.340457.
(37) Xiao, C.; Wang, J.; Zhang, C. Synthesis, Regulatory Factors, and Signaling Pathways of Estrogen in the Ovary. Reproductive Sciences 2023, 30 (2), 350-360. DOI: 10.1007/s43032-022-00932-z.
(38) Xu, X. L.; Huang, Z. Y.; Yu, K.; Li, J.; Fu, X. W.; Deng, S. L. Estrogen Biosynthesis and Signal Transduction in Ovarian Disease. Front Endocrinol (Lausanne) 2022, 13, 827032. DOI: 10.3389/fendo.2022.827032 From NLM.
(39) Al-Shami, K.; Awadi, S.; Khamees, A. a.; Alsheikh, A. M.; Al-Sharif, S.; Ala’ Bereshy, R.; Al-Eitan, S. F.; Banikhaled, S. H.; Al-Qudimat, A. R.; Al-Zoubi, R. M.; et al. Estrogens and the risk of breast cancer: A narrative review of literature. Heliyon 2023, 9 (9), e20224. DOI: https://doi.org/10.1016/j.heliyon.2023.e20224.
(40) Stanczyk, F. Z. Metabolism of endogenous and exogenous estrogens in women. The Journal of Steroid Biochemistry and Molecular Biology 2024, 242, 106539. DOI: https://doi.org/10.1016/j.jsbmb.2024.106539.
(41) Zumoff, B. Does Postmenopausal Estrogen Administration Increase the Risk of Breast Cancer? Contributions of Animal, Biochemical, and Clinical Investigative Studies to a Resolution of the Controversy. Proceedings of the Society for Experimental Biology and Medicine 1998, 217 (1), 30-37. DOI: 10.3181/00379727-217-44202.
(42) Key, T.; Appleby, P.; Barnes, I.; Reeves, G. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 2002, 94 (8), 606-616. DOI: 10.1093/jnci/94.8.606 From NLM.
(43) Wong, T.; Shah, N. R. Breast Cancer from Oral and Transdermal Estradiol: A Cohort Study of Finnish Women. Women's Health 2007, 3 (3), 321-324. DOI: 10.2217/17455057.3.3.321 (acccessed 2024/06/10).
(44) Barbosa, A. C. S.; Feng, Y.; Yu, C.; Huang, M.; Xie, W. Estrogen sulfotransferase in the metabolism of estrogenic drugs and in the pathogenesis of diseases. Expert Opin Drug Metab Toxicol 2019, 15 (4), 329-339. DOI: 10.1080/17425255.2019.1588884 From NLM.
(45) Akanni, A.; Abul-Hajj, Y. J. Estrogen−Nucleic Acid Adducts: Reaction of 3,4-Estrone-o-quinone Radical Anion with Deoxyribonucleosides. Chemical Research in Toxicology 1997, 10 (7), 760-766. DOI: 10.1021/tx970026c.
(46) Stack, D. E.; Byun, J.; Gross, M. L.; Rogan, E. G.; Cavalieri, E. L. Molecular Characteristics of Catechol Estrogen Quinones in Reactions with Deoxyribonucleosides. Chemical Research in Toxicology 1996, 9 (5), 851-859. DOI: 10.1021/tx960002q.
(47) Liang, H.-C.; Liu, Y.-C.; Chen, H.; Ku, M.-C.; Do, Q.-T.; Wang, C.-Y.; Tzeng, S.-F.; Chen, S.-H. In Situ Click Reaction Coupled with Quantitative Proteomics for Identifying Protein Targets of Catechol Estrogens. Journal of Proteome Research 2018, 17 (8), 2590-2599. DOI: 10.1021/acs.jproteome.8b00021.
(48) Huang, Y.-S.; Lin, Y.-M.; Chen, H.; Wu, C.-H.; Syu, C.-H.; Huang, T.-E.; Do, Q.-T.; Chen, S.-H. Targeting Endogenous Adduction Level of Serum Albumin by Parallel Reaction Monitoring via Standard Additions and Intact Protein Measurement: Biological Dosimetry of Catechol Estrogens. Analytical Chemistry 2019, 91 (24), 15922-15931. DOI: 10.1021/acs.analchem.9b04425.
(49) Han, X.; Liehr, J. G. Microsome-mediated 8-hydroxylation of guanine bases of DNA by steroid estrogens: correlation of DNA damage by free radicals with metabolic activation to quinones. Carcinogenesis 1995, 16 (10), 2571-2574. DOI: 10.1093/carcin/16.10.2571 From NLM.
(50) Dawling, S.; Roodi, N.; Mernaugh, R. L.; Wang, X.; Parl, F. F. Catechol-O-methyltransferase (COMT)-mediated metabolism of catechol estrogens: comparison of wild-type and variant COMT isoforms. Cancer Res 2001, 61 (18), 6716-6722. From NLM.
(51) Hachey, D. L.; Dawling, S.; Roodi, N.; Parl, F. F. Sequential action of phase I and II enzymes cytochrome p450 1B1 and glutathione S-transferase P1 in mammary estrogen metabolism. Cancer Res 2003, 63 (23), 8492-8499. From NLM.
(52) Fang, C.-M.; Ku, M.-C.; Chang, C.-K.; Liang, H.-C.; Wang, T.-F.; Wu, C.-H.; Chen, S.-H. Identification of Endogenous Site-specific Covalent Binding of Catechol Estrogens to Serum Proteins in Human Blood. Toxicological Sciences 2015, 148 (2), 433-442. DOI: 10.1093/toxsci/kfv190 (acccessed 2/10/2025).
(53) Palermo, A.; Botrè, F.; de la Torre, X.; Zamboni, N. Non-targeted LC-MS based metabolomics analysis of the urinary steroidal profile. Analytica chimica acta 2017, 964, 112-122.
(54) Cavalieri, E. L.; Rogan, E. G. Depurinating estrogen-DNA adducts, generators of cancer initiation: their minimization leads to cancer prevention. Clinical and Translational Medicine 2016, 5 (1), 12. DOI: 10.1186/s40169-016-0088-3.
(55) Cavalieri, E.; Saeed, M.; Zahid, M.; Cassada, D.; Snow, D.; Miljkovic, M.; Rogan, E. Mechanism of DNA depurination by carcinogens in relation to cancer initiation. IUBMB Life 2012, 64 (2), 169-179. DOI: https://doi.org/10.1002/iub.586.
(56) Strachan, T.; Lucassen, A. Genetics and genomics in medicine; CRC Press, 2022.
(57) Pruthi, S.; Yang, L.; Sandhu, N. P.; Ingle, J. N.; Beseler, C. L.; Suman, V. J.; Cavalieri, E. L.; Rogan, E. G. Evaluation of serum estrogen-DNA adducts as potential biomarkers for breast cancer risk. The Journal of Steroid Biochemistry and Molecular Biology 2012, 132 (1), 73-79. DOI: https://doi.org/10.1016/j.jsbmb.2012.02.002.
(58) Zahid, M.; Beseler, C. L.; Hall, J. B.; LeVan, T.; Cavalieri, E. L.; Rogan, E. G. Unbalanced estrogen metabolism in ovarian cancer. Int J Cancer 2014, 134 (10), 2414-2423. DOI: 10.1002/ijc.28565 From NLM.
(59) Zahid, M.; Goldner, W.; Beseler, C. L.; Rogan, E. G.; Cavalieri, E. L. Unbalanced estrogen metabolism in thyroid cancer. International Journal of Cancer 2013, 133 (11), 2642-2649. DOI: https://doi.org/10.1002/ijc.28275.
(60) Cavalieri, E. L.; Rogan, E. G. Etiology and prevention of prevalent types of cancer. J Rare Dis Res Treat 2017, 2 (3), 22-29. DOI: 10.29245/2572-9411/2017/3.1093 From NLM.
(61) Zahid, M.; Kohli, E.; Saeed, M.; Rogan, E.; Cavalieri, E. The Greater Reactivity of Estradiol-3,4-quinone vs Estradiol-2,3-quinone with DNA in the Formation of Depurinating Adducts: Implications for Tumor-Initiating Activity. Chemical Research in Toxicology 2006, 19 (1), 164-172. DOI: 10.1021/tx050229y.
(62) Cavalieri, E.; Frenkel, K.; Liehr, J. G.; Rogan, E.; Roy, D. Estrogens as endogenous genotoxic agents--DNA adducts and mutations. J Natl Cancer Inst Monogr 2000, (27), 75-93. DOI: 10.1093/oxfordjournals.jncimonographs.a024247 From NLM.
(63) Jackson, S. P.; Bartek, J. The DNA-damage response in human biology and disease. Nature 2009, 461 (7267), 1071-1078. DOI: 10.1038/nature08467.
(64) Cavalieri, E. L.; Stack, D. E.; Devanesan, P. D.; Todorovic, R.; Dwivedy, I.; Higginbotham, S.; Johansson, S. L.; Patil, K. D.; Gross, M. L.; Gooden, J. K.; et al. Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl Acad Sci U S A 1997, 94 (20), 10937-10942. DOI: 10.1073/pnas.94.20.10937 From NLM.
(65) Chakravarti, D.; Mailander, P. C.; Li, K.-M.; Higginbotham, S.; Zhang, H. L.; Gross, M. L.; Meza, J. L.; Cavalieri, E. L.; Rogan, E. G. Evidence that a burst of DNA depurination in SENCAR mouse skin induces error-prone repair and forms mutations in the H-ras gene. Oncogene 2001, 20 (55), 7945-7953. DOI: 10.1038/sj.onc.1204969.
(66) Li, K.-M.; Todorovic, R.; Devanesan, P.; Higginbotham, S.; Köfeler, H.; Ramanathan, R.; Gross, M. L.; Rogan, E. G.; Cavalieri, E. L. Metabolism and DNA binding studies of 4-hydroxyestradiol and estradiol-3,4-quinone in vitro and in female ACI rat mammary gland in vivo. Carcinogenesis 2004, 25 (2), 289-297. DOI: 10.1093/carcin/bgg191 (acccessed 2/4/2025).
(67) Todorovic, R.; Devanesan, P. D.; Rogan, E. G.; Cavalieri, E. L. Phosphorus-32-postlabeling analysis of the DNA adducts of 6-fluorobenzo[a]pyrene and 6-methylbenzo[a]pyrene formed in vitro. Chemical Research in Toxicology 1993, 6 (4), 530-534. DOI: 10.1021/tx00034a022.
(68) Phillips, D. H.; Arlt, V. M. The 32P-postlabeling assay for DNA adducts. Nature Protocols 2007, 2 (11), 2772-2781. DOI: 10.1038/nprot.2007.394.
(69) Zahid, M.; Gaikwad, N. W.; Ali, M. F.; Lu, F.; Saeed, M.; Yang, L.; Rogan, E. G.; Cavalieri, E. L. Prevention of estrogen–DNA adduct formation in MCF-10F cells by resveratrol. Free Radical Biology and Medicine 2008, 45 (2), 136-145. DOI: https://doi.org/10.1016/j.freeradbiomed.2008.03.017.
(70) Embrechts, J.; Lemière, F.; Van Dongen, W.; Esmans, E. L.; Buytaert, P.; Van Marck, E.; Kockx, M.; Makar, A. Detection of estrogen DNA-adducts in human breast tumor tissue and healthy tissue by combined nano LC-nano ES tandem mass spectrometry. Journal of the American Society for Mass Spectrometry 2003, 14 (5), 482-491. DOI: https://doi.org/10.1016/S1044-0305(03)00130-2.
(71) Bransfield, L. A.; Rennie, A.; Visvanathan, K.; Odwin, S.-A.; Kensler, T. W.; Yager, J. D.; Friesen, M. D.; Groopman, J. D. Formation of Two Novel Estrogen Guanine Adducts and HPLC/MS Detection of 4-Hydroxyestradiol-N7-Guanine in Human Urine. Chemical Research in Toxicology 2008, 21 (8), 1622-1630. DOI: 10.1021/tx800145w.
(72) Ding, Y.; Fleming, A. M.; Burrows, C. J. Sequencing the Mouse Genome for the Oxidatively Modified Base 8-Oxo-7,8-dihydroguanine by OG-Seq. Journal of the American Chemical Society 2017, 139 (7), 2569-2572. DOI: 10.1021/jacs.6b12604.
(73) Huang, H.; Zhang, D.; Wang, Y.; Perez-Neut, M.; Han, Z.; Zheng, Y. G.; Hao, Q.; Zhao, Y. Lysine benzoylation is a histone mark regulated by SIRT2. Nature Communications 2018, 9 (1), 3374. DOI: 10.1038/s41467-018-05567-w.
(74) Yoshihara, M.; Jiang, L.; Akatsuka, S.; Suyama, M.; Toyokuni, S. Genome-wide profiling of 8-oxoguanine reveals its association with spatial positioning in nucleus. DNA Res 2014, 21 (6), 603-612. DOI: 10.1093/dnares/dsu023 From NLM.
(75) Anders, L.; Guenther, M. G.; Qi, J.; Fan, Z. P.; Marineau, J. J.; Rahl, P. B.; Lovén, J.; Sigova, A. A.; Smith, W. B.; Lee, T. I.; et al. Genome-wide localization of small molecules. Nature Biotechnology 2014, 32 (1), 92-96. DOI: 10.1038/nbt.2776.
(76) Jiang, Y.; Mingard, C.; Huber, S. M.; Takhaveev, V.; McKeague, M.; Kizaki, S.; Schneider, M.; Ziegler, N.; Hürlimann, V.; Hoeng, J.; et al. Quantification and Mapping of Alkylation in the Human Genome Reveal Single Nucleotide Resolution Precursors of Mutational Signatures. ACS Central Science 2023, 9 (3), 362-372. DOI: 10.1021/acscentsci.2c01100.
(77) Banerjee, S.; Mazumdar, S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. International Journal of Analytical Chemistry 2012, 2012 (1), 282574. DOI: https://doi.org/10.1155/2012/282574.
(78) Pulfer, M.; Murphy, R. C. Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 2003, 22 (5), 332-364. DOI: 10.1002/mas.10061 From NLM.
(79) Thomas, S. N. Chapter 10 - Mass spectrometry. In Contemporary Practice in Clinical Chemistry (Fourth Edition), Clarke, W., Marzinke, M. A. Eds.; Academic Press, 2019; pp 171-185.
(80) Somogyi, Á. Chapter 6 - Mass spectrometry instrumentation and techniques. In Medical Applications of Mass Spectrometry, Vékey, K., Telekes, A., Vertes, A. Eds.; Elsevier, 2008; pp 93-140.
(81) Savaryn, J. P.; Toby, T. K.; Kelleher, N. L. A researcher's guide to mass spectrometry-based proteomics. PROTEOMICS 2016, 16 (18), 2435-2443. DOI: https://doi.org/10.1002/pmic.201600113.
(82) Sobott, F.; Watt, S. J.; Smith, J.; Edelmann, M. J.; Kramer, H. B.; Kessler, B. M. Comparison of CID Versus ETD Based MS/MS Fragmentation for the Analysis of Protein Ubiquitination. Journal of the American Society for Mass Spectrometry 2009, 20 (9), 1652-1659. DOI: https://doi.org/10.1016/j.jasms.2009.04.023.
(83) Casey, P. J.; Thissen, J. A.; Moomaw, J. F. Enzymatic modification of proteins with a geranylgeranyl isoprenoid. Proceedings of the National Academy of Sciences 1991, 88 (19), 8631. DOI: 10.1073/pnas.88.19.8631.
(84) Delanghe, S.; Delanghe, J.; Speeckaert, R.; Van Biesen, W.; Speeckaert, M. Mechanisms and consequences of carbamoylation. Nature Reviews Nephrology 2017, 13 (9), 580-593.
(85) Jacobs, A. T.; Marnett, L. J. Systems Analysis of Protein Modification and Cellular Responses Induced by Electrophile Stress. Accounts of Chemical Research 2010, 43 (5), 673-683. DOI: 10.1021/ar900286y.
(86) Chait, B. T. Mass Spectrometry: Bottom-Up or Top-Down? Science 2006, 314 (5796), 65. DOI: 10.1126/science.1133987.
(87) Chait, B. T. Mass Spectrometry: Bottom-Up or Top-Down? Science 2006, 314 (5796), 65-66. DOI: doi:10.1126/science.1133987.
(88) Hsu, J.-L.; Huang, S.-Y.; Chow, N.-H.; Chen, S.-H. Stable-Isotope Dimethyl Labeling for Quantitative Proteomics. Analytical Chemistry 2003, 75 (24), 6843-6852. DOI: 10.1021/ac0348625.
(89) Kolb, H. C.; Sharpless, K. B. The growing impact of click chemistry on drug discovery. Drug Discovery Today 2003, 8 (24), 1128-1137. DOI: https://doi.org/10.1016/S1359-6446(03)02933-7.
(90) Presolski, S. I.; Hong, V. P.; Finn, M. G. Copper-Catalyzed Azide-Alkyne Click Chemistry for Bioconjugation. Curr Protoc Chem Biol 2011, 3 (4), 153-162. DOI: 10.1002/9780470559277.ch110148 From NLM.
(91) Héron, J.; Balcells, D. Concerted Cycloaddition Mechanism in the CuAAC Reaction Catalyzed by 1,8-Naphthyridine Dicopper Complexes. ACS Catalysis 2022, 12 (8), 4744-4753. DOI: 10.1021/acscatal.2c00723.
(92) Wanigasekara, M. S. K.; Huang, X.; Chakrabarty, J. K.; Bugarin, A.; Chowdhury, S. M. Arginine-Selective Chemical Labeling Approach for Identification and Enrichment of Reactive Arginine Residues in Proteins. ACS Omega 2018, 3 (10), 14229-14235. DOI: 10.1021/acsomega.8b01729.
(93) Do, Q.-T.; Huang, T.-E.; Liu, Y.-C.; Tai, J.-H.; Chen, S.-H. Identification of Cytosolic Protein Targets of Catechol Estrogens in Breast Cancer Cells Using a Click Chemistry-Based Workflow. Journal of Proteome Research 2021, 20 (1), 624-633. DOI: 10.1021/acs.jproteome.0c00578.
(94) Fonović, M.; Verhelst, S. H. L.; Sorum, M. T.; Bogyo, M. Proteomics Evaluation of Chemically Cleavable Activity-based Probes*. Molecular & Cellular Proteomics 2007, 6 (10), 1761-1770. DOI: https://doi.org/10.1074/mcp.M700124-MCP200.
(95) Szychowski, J.; Mahdavi, A.; Hodas, J. J. L.; Bagert, J. D.; Ngo, J. T.; Landgraf, P.; Dieterich, D. C.; Schuman, E. M.; Tirrell, D. A. Cleavable Biotin Probes for Labeling of Biomolecules via Azide−Alkyne Cycloaddition. Journal of the American Chemical Society 2010, 132 (51), 18351-18360. DOI: 10.1021/ja1083909.
(96) Olejnik, J.; Sonar, S.; Krzymañska-Olejnik, E.; Rothschild, K. J. Photocleavable biotin derivatives: a versatile approach for the isolation of biomolecules. Proc Natl Acad Sci U S A 1995, 92 (16), 7590-7594. DOI: 10.1073/pnas.92.16.7590 From NLM.
(97) Qin, D. Next-generation sequencing and its clinical application. Cancer Biology and Medicine 2019, 16 (1), 4-10. DOI: 10.20892/j.issn.2095-3941.2018.0055.
(98) Watson, J. D.; Crick, F. H. C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 1953, 171 (4356), 737-738. DOI: 10.1038/171737a0.
(99) Sanger, F.; Brownlee, G. G.; Barrell, B. G. A two-dimensional fractionation procedure for radioactive nucleotides. Journal of Molecular Biology 1965, 13 (2), 373-IN374. DOI: https://doi.org/10.1016/S0022-2836(65)80104-8.
(100) Ray, W.; Tu, C.-p. D.; Padmanabhan, R. Nucleotide sequence analysis of DNA XII. The chemical synthesis and sequence analysis of a dodecadeoxynucleotide which binds to the endolysin gene of bacteriophage lambda. Biochemical and Biophysical Research Communications 1973, 55 (4), 1092-1099. DOI: https://doi.org/10.1016/S0006-291X(73)80007-5.
(101) Sanger, F.; Donelson, J. E.; Coulson, A. R.; Kössel, H.; Fischer, D. Use of DNA polymerase I primed by a synthetic oligonucleotide to determine a nucleotide sequence in phage fl DNA. Proc Natl Acad Sci U S A 1973, 70 (4), 1209-1213. DOI: 10.1073/pnas.70.4.1209 From NLM.
(102) Sanger, F.; Nicklen, S.; Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 1977, 74 (12), 5463-5467. DOI: 10.1073/pnas.74.12.5463 From NLM.
(103) Shendure, J.; Porreca, G. J.; Reppas, N. B.; Lin, X.; McCutcheon, J. P.; Rosenbaum, A. M.; Wang, M. D.; Zhang, K.; Mitra, R. D.; Church, G. M. Accurate Multiplex Polony Sequencing of an Evolved Bacterial Genome. Science 2005, 309 (5741), 1728-1732. DOI: doi:10.1126/science.1117389.
(104) Young, A. D.; Gillung, J. P. Phylogenomics — principles, opportunities and pitfalls of big-data phylogenetics. Systematic Entomology 2020, 45 (2), 225-247. DOI: https://doi.org/10.1111/syen.12406.
(105) Voelkerding, K. V.; Dames, S. A.; Durtschi, J. D. Next-Generation Sequencing: From Basic Research to Diagnostics. Clinical Chemistry 2009, 55 (4), 641-658. DOI: 10.1373/clinchem.2008.112789 (acccessed 2/9/2025).
(106) Bentley, D. R.; Balasubramanian, S.; Swerdlow, H. P.; Smith, G. P.; Milton, J.; Brown, C. G.; Hall, K. P.; Evers, D. J.; Barnes, C. L.; Bignell, H. R.; et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008, 456 (7218), 53-59. DOI: 10.1038/nature07517.
(107) Voelkerding, K. V.; Dames, S.; Durtschi, J. D. Next Generation Sequencing for Clinical Diagnostics-Principles and Application to Targeted Resequencing for Hypertrophic Cardiomyopathy: A Paper from the 2009 William Beaumont Hospital Symposium on Molecular Pathology. The Journal of Molecular Diagnostics 2010, 12 (5), 539-551. DOI: 10.2353/jmoldx.2010.100043 (acccessed 2025/02/08).
(108) Kircher, M.; Kelso, J. High-throughput DNA sequencing – concepts and limitations. BioEssays 2010, 32 (6), 524-536. DOI: https://doi.org/10.1002/bies.200900181.
(109) Waner, M. J.; Navrotskaya, I.; Bain, A.; Oldham, E. D.; Mascotti, D. P. Thermal and Sodium Dodecylsulfate Induced Transitions of Streptavidin. Biophysical Journal 2004, 87 (4), 2701-2713. DOI: 10.1529/biophysj.104.047266 (acccessed 2025/02/14).
(110) Lin, K.; Yan, Q.; Mitchell, A.; Funk, N.; Lu, C.; Xiao, H. A Simple Method for Non-Denaturing Purification of Biotin-Tagged Proteins Through Competitive Elution with Free Biotin. BioTechniques 2020, 68 (1), 41-44. DOI: 10.2144/btn-2019-0088.
(111) Glatter, T.; Ludwig, C.; Ahrné, E.; Aebersold, R.; Heck, A. J. R.; Schmidt, A. Large-Scale Quantitative Assessment of Different In-Solution Protein Digestion Protocols Reveals Superior Cleavage Efficiency of Tandem Lys-C/Trypsin Proteolysis over Trypsin Digestion. Journal of Proteome Research 2012, 11 (11), 5145-5156. DOI: 10.1021/pr300273g.
(112) Haaf, H.; Li, S. A.; Li, J. J. Covalent binding of estrogen metabolites to hamster liver microsomal proteins: inhibition by ascorbic acid and catechol- O -methyl transferase. Carcinogenesis 1987, 8 (2), 209-215. DOI: 10.1093/carcin/8.2.209 (acccessed 2/13/2025).
(113) Yao, J.; Chang, M.; Li, Y.; Pisha, E.; Liu, X.; Yao, D.; Elguindi, E. C.; Blond, S. Y.; Bolton, J. L. Inhibition of Cellular Enzymes by Equine Catechol Estrogens in Human Breast Cancer Cells: Specificity for Glutathione S-Transferase P1-1. Chemical Research in Toxicology 2002, 15 (7), 935-942. DOI: 10.1021/tx020018i.
(114) Iverson, S. L.; Shen, L.; Anlar, N.; Bolton, J. L. Bioactivation of Estrone and Its Catechol Metabolites to Quinoid−Glutathione Conjugates in Rat Liver Microsomes. Chemical Research in Toxicology 1996, 9 (2), 492-499. DOI: 10.1021/tx950178c.
(115) Huang, X.; Hou, M.-J.; Zhu, B. T. Protection of HT22 neuronal cells against chemically-induced ferroptosis by catechol estrogens: protein disulfide isomerase as a mechanistic target. Scientific Reports 2024, 14 (1), 23988. DOI: 10.1038/s41598-024-74742-5.
(116) Thurman, R. E.; Rynes, E.; Humbert, R.; Vierstra, J.; Maurano, M. T.; Haugen, E.; Sheffield, N. C.; Stergachis, A. B.; Wang, H.; Vernot, B.; et al. The accessible chromatin landscape of the human genome. Nature 2012, 489 (7414), 75-82. DOI: 10.1038/nature11232.
(117) Barnea, E. R.; MacLusky, N. J.; Naftolin, F. Kinetics of catechol estrogen-estrogen receptor dissociation: A possible factor underlying differences in catechol estrogen biological activity. Steroids 1983, 41 (5), 643-656. DOI: https://doi.org/10.1016/0039-128X(83)90030-2.
(118) Klinge, C. M. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 2001, 29 (14), 2905-2919. DOI: 10.1093/nar/29.14.2905 (acccessed 8/24/2024).
(119) Hubé, F.; Francastel, C. Mammalian Introns: When the Junk Generates Molecular Diversity. International Journal of Molecular Sciences 2015, 16 (3), 4429-4452.
(120) Stork, C. T.; Bocek, M.; Crossley, M. P.; Sollier, J.; Sanz, L. A.; Chédin, F.; Swigut, T.; Cimprich, K. A. Co-transcriptional R-loops are the main cause of estrogen-induced DNA damage. eLife 2016, 5, e17548. DOI: 10.7554/eLife.17548.
(121) Crossley, M. P.; Bocek, M.; Cimprich, K. A. R-Loops as Cellular Regulators and Genomic Threats. Mol. Cell 2019, 73 (3), 398-411. DOI: 10.1016/j.molcel.2019.01.024 (acccessed 2024/08/24).
(122) Li, X.; Heyer, W.-D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 2008, 18 (1), 99-113. DOI: 10.1038/cr.2008.1.
(123) Williamson, L. M.; Lees-Miller, S. P. Estrogen receptor α-mediated transcription induces cell cycle-dependent DNA double-strand breaks. Carcinogenesis 2010, 32 (3), 279-285. DOI: 10.1093/carcin/bgq255 (acccessed 8/24/2024).
(124) Spillman, M. A.; Bowcock, A. M. BRCA1 and BRCA2 mRNA levels are coordinately elevated in human breast cancer cells in response to estrogen. Oncogene 1996, 13 (8), 1639-1645. From NLM.
(125) Alayev, A.; Salamon, R. S.; Manna, S.; Schwartz, N. S.; Berman, A. Y.; Holz, M. K. Estrogen induces RAD51C expression and localization to sites of DNA damage. Cell Cycle 2016, 15 (23), 3230-3239. DOI: 10.1080/15384101.2016.1241927.
(126) Pedram, A.; Razandi, M.; Aitkenhead, M.; Hughes, C. C. W.; Levin, E. R. Integration of the Non-genomic and Genomic Actions of Estrogen: MEMBRANE-INITIATED SIGNALING BY STEROID TO TRANSCRIPTION AND CELL BIOLOGY*. Journal of Biological Chemistry 2002, 277 (52), 50768-50775. DOI: https://doi.org/10.1074/jbc.M210106200.
(127) Li, L. Development of quantitative LC-MS/MS methods for the pharmacological studies of anti-cancer drugs. 2011.
(128) Embrechts, J.; Lemière, F.; Van Dongen, W.; Esmans, E. L.; Buytaert, P.; Van Marck, E.; Kockx, M.; Makar, A. Detection of estrogen DNA-adducts in human breast tumor tissue and healthy tissue by combined nano LC-nano ES tandem mass spectrometry. J Am Soc Mass Spectrom 2003, 14 (5), 482-491. DOI: 10.1016/s1044-0305(03)00130-2 From NLM.
(129) Stachowicz-Kuśnierz, A.; Korchowiec, J. Nucleophilic properties of purine bases: inherent reactivity versus reaction conditions. Struct. Chem. 2016, 27 (2), 543-555. DOI: 10.1007/s11224-015-0583-y.
(130) Saeed, M.; Zahid, M.; Gunselman, S. J.; Rogan, E.; Cavalieri, E. Slow loss of deoxyribose from the N7deoxyguanosine adducts of estradiol-3,4-quinone and hexestrol-3′,4′-quinone.: Implications for mutagenic activity. Steroids 2005, 70 (1), 29-35. DOI: https://doi.org/10.1016/j.steroids.2004.09.011.
校內:2027-04-30公開