簡易檢索 / 詳目顯示

研究生: 劉信良
Liu, Hsin-Liang
論文名稱: 鎢化鈦和鎢透明電極的研究並應用於氮化鎵系列發光二極體與光檢測器
The Study of TiW & W Transparent Electrodes and its Application in Nitride-Based Lights Emitting Diodes and Photodetectors
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 67
中文關鍵詞: 光檢測器發光二極體鎢化鈦
外文關鍵詞: Photodetectors, LEDs, W, TiW
相關次數: 點閱:62下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文中我們研究了利用射頻濺鍍系統沉積的鎢化鈦及鎢之特性。鎢化鈦及鎢分別在射頻功率為300W及250W下得到最好的薄膜品質。在薄膜厚度為10 nm時, 鎢化鈦和鎢在360 nm波長下之透明度分別為75%及68.3%;而導電度分別為1.7×10-3及1.5×10-3 Ω-cm。

      我們利用鎢化鈦和鎢當作氮化鎵/氮化銦鎵多層量子井發光二極體之p型透明導電層。在20 mA直流電流下,以鎢化鈦和鎢當作p型透明導電層的發光二極體的順向操作電壓分別為3.66V及3.77V。20 mA直流電流的光輸出功率分別為3.44 mW及3.24 mW。至於在可靠度的測試上,是在80℃、50 mA條件下操作,而在經過70小時的操作後,發現在光強度上都退化了75%左右,另外20 mA的順向操作電壓則分別增加了20%及30%。

      我們也研究鎢化鈦及鎢在蕭基特性的應用,我們利用鎢化鈦和鎢建構氮化鎵的蕭基二極體,鎢化鈦和鎢在未摻雜氮化鎵上的蕭基位障高度分別為0.773 eV及0.777 eV。 最後我們利用鎢化鈦和鎢作為氮化鎵金半金光檢測器上之透明電極。兩種光檢測器之響應互斥比都大於103。在一個給定的頻寬1kHz、檢測器工作區400×400 μm2和3V偏壓下,可算出最低的雜訊等效功率分別為1.987×10-10 W 及3.313×10-10 W 和最高的歸一化檢測度分別為6.365×109 cmHz0.5W-1 及3.818×109 cmHz0.5W-1。

     In this thesis, characteristics of TiW and W, which prepared by RF magnetron sputtering system, has been studied. TiW and W have the best film quality at the RF power of 300W and 250W, respectively. At wavelength of 360 nm, transmittance and conductivity of 10 nm TiW and W was 75% / 1.7×10-3 ohm-cm and 68.3% / 1.5×10-3 ohm-cm, respectively.

     GaN/InGaN MQW light emitting diodes (LEDs) with TiW and W as p contact layer were fabricated. At 20 mA current injection, forward voltage of LEDs with TiW and W as p-contact layer was 3.66V and 3.77V, respectively. Measured 20 mA output power of LEDs with TiW and W as p-contact layer was 3.44 mW and 3.24 mW, respectively. During reliability test, EL intensity were both decayed around 75%. However, forward voltages were increased by 20% and 30% for LEDs with TiW and W as p-contact layer were, respectively.

     Schottky applications of TiW and W contact on GaN based semiconductor were also studied. We fabricated GaN Schottky Diodes with TiW and W as schottky contacts. Calculated Schottky barrier height of TiW and W between u-GaN was 0.773eV and 0.777eV, respectively. Finally, GaN based metal-semiconductor-metal photodetectors (MSM PDs) with TiW and W as transparent electrodes were fabricated. Rejection ratio of PDs with these two contacts were both higher than 103. For a given bandwidth of 1kHz and detector area of 400×400m2, minimum noise equivalent power and maximum normalized detectivity were calculated to be 1.987×10-10 W/ 6.365×109 cmHz0.5W-1 and 3.313×10-10 W / 3.818×109 cmHz0.5W-1 with 3V applied bias voltage for PDs with TiW and W transparent electrodes, respectively.

    Abstract (in Chinese)------------------------------------------------------I Abstract (in English)------------------------------------------------------III Contents-------------------------------------------------------------------VI Table Captions-------------------------------------------------------------IX Figure Captions------------------------------------------------------------X Chapter 1. Introduction----------------------------------------------------1 1-1. Background and Motivation-------------------------------------------1 1-2. Organization of My Thesis-------------------------------------------2 Chapter 2. The Chemical, Optical and Physical Properties of Transparent Films-----------------------------------------------------------------------------7 2-1. The Characteristics of RF-Sputter System----------------------------7 2-2. The Process Characteristics of TiW and W Films----------------------8 2-3. The XRD Analysis of TiW and W Films---------------------------------9 2-4. The Transmittance of TiW and W Films--------------------------------9 2-5. The Conductivity of TiW and W Films--------------------------------10 2-6. Summary------------------------------------------------------------11 Chapter 3. The Electrical Characteristics of GaN LEDs with TiW and W as Transparent Contact Layer (TCL)-------------------------------------------20 3-1. The Fabrication of GaN LEDs with TiW and W as Transparent Contact Layer- -------------------------------------------------------------------21 3-2. The Electro-Luminous of GaN LEDs with TiW and W as Transparent Contact Layer--------------------------------------------------------------22 3-3. The Current-Voltage Characteristics of GaN LEDs with TiW and W as Transparent Contact Layer------------------------------------------23 3-4. The Output Power of GaN LEDs with TiW and W as Transparent Contact Layer--------------------------------------------------------------23 3-5. The Lifetime of GaN LEDs with TiW and W as Transparent Contact Layer---- -------------------------------------------------------------------24 Chapter 4. The Fabrication and Characteristics of GaN MSM Photodetectors with Transparent Electrode-----------------------------------------------------33 4-1. The Fabrication of GaN MSM Photodetectors--------------------------34 4-2. The Characteristics of Schottky Diodes with TiW and W Transparent Electrodes---------------------------------------------------------35 4-2-1. The Fabrication of GaN Schottky Diodes-------------------------35 4-2-2. The Characteristics of GaN Schottky Diodes---------------------36 4-3. The Current-Voltage Characteristics of GaN MSM Photodetectors with TiW and W Transparent Electrodes---------------------------------------37 4-4. The Responsivity of GaN MSM Photodetectors with TiW and W Transparent Electrodes---------------------------------------------------------38 4-5. The Noise Characteristics of GaN MSM Photodetectors with TiW and W Transparent Electrodes---------------------------------------------40 4-5-1. Types of Low Frequency Noise-----------------------------------40 4-5-2. Noise Characteristics of GaN MSM Photodetectors----------------44 Chapter 5. Conclusions and Future Works-----------------------------------64 5-1. Conclusions--------------------------------------------------------64 5-2. Future Works-------------------------------------------------------65

    Chapter1
    [1] R. F. Davis, Proc. IEEE 5, 702 (1991).
    [2] S. Strite, M. E. Lin, and H. Morkoc, Thin Solid Films, Vol. 231, 197 (1993).
    [3] M. A. Khan, M. S. Shur, J. N. Kuzunia, Q. Chen, J. Burm, and W. Schaff, Appl. Phys. Lett., Vol. 66, 1083 (1995).
    [4] O. Aktas, Z. F. Fan, S. N. Mmohammand, A. E. Botchkarev, and H. Morkoc, Appl. Phys. Lett., Vol. 69, 3872 (1996).
    [5] H. P. Maruska, and J. J. Tietjen, Appl. Phys. Lett., Vol. 15, 327 (1969).
    [6] P. B. Perry, and R. F. Rutz, Appl. Phys. Lett., Vol. 33, 319 (1978).
    [7] S. Itho, N. Nakayama, S. Matsumoto, M. Nagai, K. Nakano, M. Ozawa, H. Okuyama, S. Tomiya, T. Ohata, M. Ikeda, A. Ishibashi, and Y. Mori, Jpn. J. Appl. Phys., Vol. 33, 938 (1994).
    [8] H. Morkoe, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys., Vol. 76, 1363 (1994).
    [9] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and K. T. Ilson, Appl. Phys. Lett., Vol. 62, 1786 (1993).
    [10] C. S. Chang, T. B. Wu, C. K. Huang, W. C. Shih, and L. L. Chao, Jpn. J. Appl. Phys., Vol. 39, 6413 (2000).
    [11] J. Kriz, K. Gottfried, C. Kaufmann, and T. Geβner, Diamond and Related Materials, Vol. 7, 77 (1998).
    [12] C. S. Lee, E. Y. Chang, L. Chang, C. Y. Fang, Y. L. Huang, and J. S. Huang, Jpn. J. Appl. Phys., Vol. 42, 4193 (2003).
    [13] M. W. Cole, D. W. Eckart, W. Y. Han, R. L. Pfeffer, T. Monahan, F. Ren, C. Yuan, R. A. Stall, S. J. Pearton, Y. Li, and Y. Lu, J. Appl. Phys., Vol. 80, 278 (1996).
    [14] J. Kim, F. Ren, A. G. Baca, and S. J. Pearton, J. Appl. Phys., Vol. 82, 3263 (2003).
    [15] X. A. Cao, F. Ren, S. J. Pearton, A. Zeitouny, M. Eizenberg, J. C. Zolper, C. R. Abernathy, J. Han, R. J. Shul, and J. R. Lothian, J. Vac. Sci. Technol. A, 17(4), 1221 (1999).

    Chapter2
    [1] J. L. Vossen, and W. Kern, “Thin Film Processed”, Academic Press, New York, 131 (1978).
    [2] C. Y. Chang, and S. M. Sze,“ULSI Technology”, McGraw-Hill, New York, 380 (1996).
    [3] J. L. Vossen, and W. Kern, “Thin Film Processed”, Academic Press, New York, 24 (1978).
    [4] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. F. Chen, C. S. Chang, S. H. Liu, Y. C. Lin, and C. H. Chen, Jpn. J. Appl. Phys., Vol. 41, 3643 (2002).
    [5] Y. K. Su, F. S. Juang, and M. H. Chen, Jpn. J. Appl. Phys., Vol. 42, pp. 2257 (2003).
    [6] 國立成功大學碩士論文, “The Fabrication and Study of GaN Based Photodetectors”, by Sen-Hai Liu.

    Chapter 3
    [1] T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai, C. H. Kuo, C. H. Chen, J.K. Sheu, and J. F. Chen, IEEE Trans. Electron. Dev., Vol. 49, 1093 (2002).
    [2] L.W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, W. C. Lai, C. H. Kuo, J. F. chen, C. H. Chen, and J. K. Sheu, IEEE J. Quantum Electron., Vol. 38, 446 (2002).
    [3] C. H. Kuo, S. J. Chang, Y. K. Su, J. F. Chen, L. W. Wu, J. K. Sheu, C. H. Chen, and G. C. Chi, IEEE electron. Dev. Lett., Vol. 23, 240 (2002).
    [4] C. H. Kuo, Y. K. Su, S. J. Chang, T. M. Kuan, C. I. Chiang, W. H. Lan, W. J. Lin, and J. Webb, Jpn. J. App.l Phys., Vol. 41, 2489 (2002).
    [5] J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang, and G. C. Chi, IEEE Electron. Dev. Lett., Vol. 22, 460 (2001).
    [6] C. H. Kuo, S. J. Chang, Y. K. Su, L. W. Wu, J. K. Sheu, C. H. Chen, and G. C. Chi, Jpn. J. Appl. Phys. Lett., Vol. 41, L112 (2002).
    [7] S. J. Chang, Y. K. Su, T. L. Tsai, C. Y. Chang, C. L. Chiang, C. S. Chang, T. P. Chen, and K. H. Huang, Appl. Phys. Lett., Vol. 78, 312 (2001).
    [8] W. C. Lai, M. Yokoyama, S. J. Chang, J. D. Guo, C. H. Sheu, T. Y. Chen, W. C. Tsai, J. S. Tsang, S. H. Chan, and S. M. Sze, Jpn. J. Appl. Phys. Lett., Vol. 39, 1138 (2000).
    [9] Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, C. W. Kuo, S. C. Chen, Solid-State Electron., Vol. 47, 849 (2003).

    Chapter 4
    [1] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Gong, Y. C. Lin, S. H. Liu, and C. S. Chang, IEEE J. Quan. Electron., Vol. 39, 681 (2003).
    [2] E. Monroy, E. Muňoz, F. J. Sánchez, F. Calley, E. Calleja, B. Beaumont, P. Gibart, J. A. Muňoz, and F. Cussó, Semicond. Sci. Tec., Vol. 13, 1042 (1998).
    [3] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç¸ G. Smith, M. Estes, B. Goldenberg, W. Yang, and S. Krishnankutty, Appl. Phys. Lett., Vol. 71, 2154 (1997).
    [4] N. Biyikli, I. Kimukin, O. Aytur, and E. Ozbay, IEEE Photon. Technol. Lett., Vol. 16, 1718 (2004).
    [5] N. Biyikli, I. Kimukin, T. Tut, T. Kartaloglu, O. Aytur, and E. Ozbay,Semicond. Sci. Technol., Vol. 19, 1259 (2004).
    [6] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, U. K. Mishra, and E. J. Tarsa, Appl. Phys. Lett., Vol. 75, 247 (1999).
    [7] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, Appl. Phys. Lett., Vol. 71, 2334 (1997).
    [8] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, Appl. Phys. Lett., Vol. 80, 347 (2002).
    [9] V. Adivarahan, G. Simin, J. W. Yang, A. Lunev, M. Asif Khan, N. Pala, M. Shur, and R. Gaska, Appl. Phys. Lett., Vol. 77, 863 (2000).
    [10] O. Katz, G. Bahir, and J. Salzman, Appl. Phys. Lett., Vol. 84, 4092 (2004).
    [11] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, Appl. Phys. Lett., Vol. 79, 1417 (2001).
    [12] E. Monroy, T. Palacios, O. Hainaut, F. Omnès, F. Calle, and J. F. Hochedez, Appl. Phys. Lett., Vol. 80, 3198 (2002).
    [13] M. Mosca, J. L. Reverchon, F. Omnès, and J. Y. Duboz, Appl. Phys. Lett., Vol. 95, 4367 (2004).
    [14] Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang, and J. K. Sheu, Jpn. J. Appl. Phys., Vol. 40, 2996 (2001).
    [15] T. Palacios, E. Monroy, F. Calle, and F. Omnès, Appl. Phys. Lett., Vol. 81, 1902 (2002).
    [16] J. Li, Y. Xu, T. Y. Hsiang, and W. R. Donaldson, Appl. Phys. Lett., Vol. 84, 2091 (2004).
    [17] J. L. Pau, C. Rivera, E. Muňoz, E. Calleja, U. Schühle, E. Frayssinet, B. Beaumont, J. P. Faurie, and P. Gibart, J. Appl. Phys., Vol. 95, 8275 (2004).
    [18] Y. Z. Chiou, J. R. Chiou, Y. K. Su, S. J. Chang, B. R. Huang, C. S. Chang, and Y. C. Lin, Mater. Chem. Phys., Vol. 80, 201 (2003).
    [19] C. K. Wang, S. J. Chang, Y. K. Su, C. S. Chang, Y. Z. Chiou, C. H. Kuo, T. K. Lin, T. K. Ko and J. J. Tang, Mater. Sci. Eng. B, Vol. 112, 25 (2004).
    [20] Y. Z. Chiou, and J. J. Tang, Jpn. J. Appl. Phys., Vol. 43, 4146 (2004).
    [21] Y. K. Su, F. S. Juang, and M. H. Chen, Jpn. J. Appl. Phys., Vol. 42, 2257 (2003).
    [22] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. F. Chen, C. S. Chang, S. H. Liu, Y. C. Lin, and C. H. Chen, Jpn. J. Appl. Phys., Vol. 41, 3643 (2002).
    [23] J. K. Kim, and J. L. Lee, J. Electochem. Soc., Vol. 151, G190 (2004)
    [24] J. K. Kim, H. W. Jang, C. M. Jeon, and J. L. Lee, Appl. Phys. Lett., Vol. 81, 4655 (2002).
    [25] H. Norde, J. Appl. Phys., Vol. 50, 5052 (1979).
    [26] K. E. Bohlin, J. Appl. Phys., Vol. 60, 1223 (1986).
    [27] Aldert van der Ziel, “Noise in Solid State Devices and Circuits”, (1986).
    [28] 國立成功大學碩士論文, “Electrical Characteristics and Low Frequency Noise Investigations of AlGaN/GaN Metal-oxide-Semiconductor Heterostructure Field Effect Transistors”, by Tsun-Kai Ko.
    [29] 國立成功大學博士論文, “The Study of Nitride-Based Field Effect Transistors and Photodetectors”, by Yu-Zung Chiou.

    Chapter 5
    [1] R. A. Metzger, “OEIC photoreceivers,” Com. Semi., 18 (1996).
    [2] Z. Lao, V. Hurm, W. Bronner, A. Hulsmann, T. Jakobus, K. Kohler, M. Ludwig, B. Raynor, J. Rosenzweig, M. Schlechtweg, and A. Thiede. IEEE Photo. Tec. Lett., Vol. 10, 710 (1998).
    [3] F. Schwierz, and O. Ambacher, IEEE, 204 (2003).
    [4] M. Werquin, C. Gaquiere, Y. Guhel, N. Vellas, D. Theron, B. Boudart, V. Hoel, M. Germain, J. C. De Jaeger, and S. Delage, IEEE Electro. Lett., Vol. 41, (2005).
    [5] Y. Z. Chiou, S. J. Chang, Y. K. Su, C. K. Wang, T. K. Lin, and B. R. Huang, IEEE Trans. Electron. Dev., Vol. 50, 1748 (2003).
    [6] K. Matocha, T. Paul Chow, and Ronald J. Gutmann, IEEE Trans. Electron. Dev., Vol. 52, 6 (2005).

    下載圖示 校內:立即公開
    校外:2005-06-30公開
    QR CODE