簡易檢索 / 詳目顯示

研究生: 藍冠顯
Lan, Kuan-Hsien
論文名稱: 探討不同醣化型IL6所引起的下游訊息變化
To investigate the downstream signaling change induced by the IL-6 glycoforms
指導教授: 蘇五洲
Su, Wu-Chou
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 32
中文關鍵詞: 肺癌醣基化N醣醣基化介白素-6SrcYAPErk
外文關鍵詞: Lung cancer, Glycosylation, N-glycosylation, Interleukin-6, Src, YAP, Erk
相關次數: 點閱:147下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 介白素-6在細胞中具有不同的功能,是一種多功能的蛋白,在免疫的反應以及癌症的惡化上都具有一席之地。轉譯後修飾(Posttranslational Signal Modification ,PTM);蛋白質胜肽鏈被組裝出來之後,需要被修飾成具有功能的結構,才能形成具有功能的蛋白。相關的修飾作用有,醣化、甲基化、乙醯化、磷酸化等等。經由先前實驗室實驗的結果,介白素-6在N73這個位點上會產生N醣結構,若對這個點進行點突變會對細胞的行為產生改變。
    因此為確定介白素-6的N醣結構是否會對相關下游細胞訊息傳遞所產生影響,進行相關實驗。市面上所販售的Human recombinant介白素-6不具有醣化型,為要研究醣化型介白素-6的功能,必須要以人類細胞來做實驗,而PC14PE6/AS2(簡稱AS2)以及CL1-0是本次實驗所使用的人類肺腺癌細胞株。經由microarray的結果以及相關的研究指出,介白素-6訊息傳遞路經中的相關蛋白Src會對下游細胞進行影響,因此先以Src為首先檢測的訊息傳遞路徑;從microarray 結果發現,相較於帶有完整醣化的介白素-6,N73 位點的醣基去除後的介白素-6展現更強的Src活化活性。並且也帶動Src 下游基因的表達。我們接著使用含有不同介白素-6的條件培養基再對AS2 與CL1-0 細胞進行刺激,發現Src 也有相當程度活化的差異。最近研究報導Src 也會調控下游YAP訊息之傳遞,因此我們接著觀察YAP路徑在我們系統的活化狀態。此外,IL-6除了JAK/STAT3,亦會活化AKT與Erk等訊息,所以我們也從這些已知的訊息傳遞路徑進行實驗觀察。其中,在Erk的活化上發現到,在處理不同醣型的介白素-6後會有訊號上的改變。之後對實驗進行探討,在實驗方法方面,可能是由於介白素-6的產量在條件培養基中所含有的含量無法達到能夠穩定刺激細胞的濃度;也有可能是在實驗手法上所產生的誤差。
    綜合以上實驗結果得知,肺癌細胞所分泌之不同醣型的介白素-6對於細胞內有不同的訊息傳遞調控。再者,我們更明白,醣化修飾對於細胞激素誘發的訊息傳導有重要的調控作用,或許能夠對未來的相關研究提供新穎的研究方向。

    Non-small-cell lung cancer (NSCLC) is the most common type of lung cancer and often causes the tumor-related deaths. High IL-6 levels can be detected in the circulation of lung cancer patients and correlated with worse clinical outcome. The post-translational modifications (PTMs) can influence the structure and alter the functions of proteins. One N-glycosylation site was predicted on Asparagine (N) 73 residue. Our previous results determined that stable expression of IL-6 which bearing N73Q mutation altered the STAT3 signaling pathway on lung cancer cell line. Src kinase family protein have been reported being regulated by IL-6 signaling and further more leads to the activation of YAP/TAZ transcription factor in cell regeneration manner. By the experiments of Western blot, IL-6 glycoforms secreted from lung cancer cell lines can induce different signaling pathways. Furthermore, we know that glycosylation on cytokine is important for the regulation of cell signaling.

    目錄 中文摘要 II 英文延伸摘要 IV 誌謝 VII 背景 1 肺癌 1 介白素-6 1 介白素-6受體複合體 2 訊息傳遞及轉錄活化蛋白-3 (signal transducer and activator of transcription 3, STAT3) 2 轉錄後修飾(Posttranslational modification) 3 醣基化(Glycosylation) 3 MAPK (Erk)訊息傳遞路徑 4 Src Family Kinase (SFK) 4 YAP/TAZ蛋白在癌症中所扮演的功用 5 醣基化與肺癌的關聯性 6 材料與方法 7 細胞選殖與培養 7 細胞轉染 8 細胞計算 8 條件培養基(Conditioned Medium)的收集 8 條件培養基的處理(Conditioned medium treatment) 9 細胞素的處理(Cytokine treatment) 9 細胞溶解產物 (Lysate)的收集 9 西方墨點法 10 酵素免疫分析法(Enzyme-Linked Immunosorbent Assay) 10 免疫沉澱法(Immunoprecipitation) 11 RNA萃取 12 RT-PCR 12 RT-PCR 引子(Primer)序列 12 論文假說 13 實驗結果 13 1.不同醣型的IL-6影響Src下游。 13 2. CL1-0-vec2以及CL1-0-IL6-N73Q的建立。 14 3. AS2-IL6-N73Q-G的建立。 14 4. 介白素-6條件培養基處理CL1-0後訊息的改變。 15 討論 16 參考文獻與著作 18

    1. Didkowska, J., et al., Lung cancer epidemiology: contemporary and future challenges worldwide. Ann Transl Med, 2016. 4(8): p. 150.
    2. Chen, Z., et al., Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer, 2014. 14(8): p. 535-46.
    3. Hunter, C.A. and S.A. Jones, IL-6 as a keystone cytokine in health and disease. Nat Immunol, 2015. 16(5): p. 448-57.
    4. Park, E.J., et al., Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell, 2010. 140(2): p. 197-208.
    5. Atsumi, T., et al., A Point Mutation of Tyr-759 in Interleukin 6 Family Cytokine Receptor Subunit gp130 Causes Autoimmune Arthritis. The Journal of Experimental Medicine, 2002. 196(7): p. 979-990.
    6. Grivennikov, S., et al., IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell, 2009. 15(2): p. 103-13.
    7. Bollrath, J., et al., gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell, 2009. 15(2): p. 91-102.
    8. Schiechl, G., et al., Tumor development in murine ulcerative colitis depends on MyD88 signaling of colonic F4/80+CD11b(high)Gr1(low) macrophages. J Clin Invest, 2011. 121(5): p. 1692-708.
    9. Schafer, Z.T. and J.S. Brugge, IL-6 involvement in epithelial cancers. J Clin Invest, 2007. 117(12): p. 3660-3.
    10. Yeh, H.H., et al., Autocrine IL-6-induced Stat3 activation contributes to the pathogenesis of lung adenocarcinoma and malignant pleural effusion. Oncogene, 2006. 25(31): p. 4300-9.
    11. Guo, Y., et al., Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev, 2012. 38(7): p. 904-10.
    12. Raj B. PAREKH', R.A.D., Thomas W. RADEMACHER', Ghislain OPDENAKKER' and Jo VAN DAMME', Glycosylation of interleukin-6 purified from normal human blood mononuclear cells. Eur. J. Biochem., 1992. 203: p. 135-141
    13. ELIZABETH, et al., O-linked protein glycosylation structure and function. GlycoconjugaW Journal, 1996. 13: p. 9-26.
    14. Putoczki, T.L., et al., Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell, 2013. 24(2): p. 257-71.
    15. Grivennikov, S.I., IL-11: a prominent pro-tumorigenic member of the IL-6 family. Cancer Cell, 2013. 24(2): p. 145-7.
    16. Masahiko Hibi, M.M., Mikiyoshi Saito,Toshio Hirano, Tetsuya Taga, and Tadamitsu Kishimoto, Molecular Cloning and Expressionof an IL-6 Signal Transducer, gp130. Cell, 1990. 63: p. 1149-I157.
    17. Skiniotis, G., et al., Signaling conformations of the tall cytokine receptor gp130 when in complex with IL-6 and IL-6 receptor. Nat Struct Mol Biol, 2005. 12(6): p. 545-51.
    18. Yu, H., et al., Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer, 2014. 14(11): p. 736-46.
    19. Srivastava, K.E.K.a.S., Posttranslational Protein Modifications. Molecular & Cellular Proteomics, 2006. 5: p. 1799-1810.
    20. Xu, C. and D.T. Ng, Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol, 2015. 16(12): p. 742-52.
    21. Hart, G.W., et al., Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem, 2011. 80: p. 825-58.
    22. Boscher, C., J.W. Dennis, and I.R. Nabi, Glycosylation, galectins and cellular signaling. Curr Opin Cell Biol, 2011. 23(4): p. 383-92.
    23. McCain, J., The MAPK (ERK) Pathway Investigational Combinations for the Treatment Of BRAF-Mutated Metastatic Melanoma. P&T, 2013. 38(2).
    24. Samatar, A.A. and P.I. Poulikakos, Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discov, 2014. 13(12): p. 928-42.
    25. Zhang, J., et al., SRC-family kinases are activated in non-small cell lung cancer and promote the survival of epidermal growth factor receptor-dependent cell lines. Am J Pathol, 2007. 170(1): p. 366-76.
    26. Formisano1, L., et al., Src inhibitors act through different mechanisms in Non-Small Cell Lung Cancer models depending on EGFR and RAS mutational status. Oncotarget, 2015. 6(28).
    27. Moroishi, T., C.G. Hansen, and K.L. Guan, The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer, 2015. 15(2): p. 73-9.
    28. Mo, J.S., H.W. Park, and K.L. Guan, The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep, 2014. 15(6): p. 642-56.
    29. Johnson, R. and G. Halder, The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov, 2014. 13(1): p. 63-79.
    30. Jeong-Ho Hong, E.S.H., 3 Michael T. McManus,1, et al., TAZ, a Transcriptional Modulator of Mesenchymal Stem Cell Differentiation. SCIENCE, 2005. 309.
    31. Cordenonsi, M., et al., The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell, 2011. 147(4): p. 759-72.
    32. Arnal-Estape, A. and D.X. Nguyen, Sweets for a bitter end: lung cancer cell-surface protein glycosylation mediates metastatic colonization. Cancer Discov, 2015. 5(2): p. 109-11.
    33. Ho, W.L., et al., Protein glycosylation in cancers and its potential therapeutic applications in neuroblastoma. J Hematol Oncol, 2016. 9(1): p. 100.
    34. Taniguchi, K., et al., A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature, 2015. 519(7541): p. 57-62.
    35. Huang, Y.H., et al., Src contributes to IL6-induced vascular endothelial growth factor-C expression in lymphatic endothelial cells. Angiogenesis, 2014. 17(2): p. 407-18.
    36. Zumoffen, C.M., et al., Proteins from human oviductal tissue-conditioned medium modulate sperm capacitation. Hum Reprod, 2010. 25(6): p. 1504-12.
    37. Cantinieaux, D., et al., Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One, 2013. 8(8): p. e69515.
    38. Fu, N., et al., Comparison of protein and mRNA expression evolution in humans and chimpanzees. PLoS One, 2007. 2(2): p. e216.
    39. Wegiel, B., et al., Interleukin-6 activates PI3K/Akt pathway and regulates cyclin A1 to promote prostate cancer cell survival. Int J Cancer, 2008. 122(7): p. 1521-9.

    下載圖示 校內:2022-07-20公開
    校外:2022-07-20公開
    QR CODE