| 研究生: |
鍾進霖 Chung, Chin-Lin |
|---|---|
| 論文名稱: |
牛流行熱病毒外套膜醣蛋白G基因DNA疫苗之改進:結合趨化素CXCL10和細胞激素Flt-3L基因之影響 Improvement of DNA vaccine of bovine ephemeral fever viral glycoprotein G gene: effect of the combination with the chemokine CXCL10 and cytokine Flt-3L gene |
| 指導教授: |
陳世輝
Chen, Shih-Hui 謝耀清 Hsieh, Yao-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 細胞激素 、趨化素 、核酸疫苗 、牛流行熱病毒 、BEFV-G 、Flt-3l 、CXCL10 |
| 外文關鍵詞: | CXCL10, Flt-3l, BEFV-G, cytokine, chemokine, DNA vaccine, Bovine ephemeral fever virus |
| 相關次數: | 點閱:208 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
牛流行熱病毒( bovine ephemeral fever virus, BEFV )為子彈型病毒科( Rhabdoviridae )的暫時熱病毒屬( Ephemerovirus ),經由糠蠓等節肢動物作為媒介,會感染牛隻造成急性發熱、呼吸症狀、流產、產乳量下降和死亡等症狀,影響畜牧業經濟損失。現行使用之疫苗為民國73年所分離之病毒株經福馬林不活化後,加入氫氧化鋁膠作為佐劑製成不活化疫苗,保護力仍不理想。本實驗室相繼投入了針對牛流行熱外套膜醣蛋白G基因 pBEFV-G核酸疫苗之研發與改良,前後曾搭配細胞激素IL-2或GM-CSF基因,或是改良G基因本身結構,融合在細胞間具移動能力之VP22基因,或給予CpG核苷佐劑,或搭配CC型趨化素CCL5基因與核輸出訊號NES基因作為免疫佐劑改進核酸疫苗,雖然有較好的免疫效力產生,但中和抗體效價仍不夠理想。
本研究擬利用CXC型趨化素CXCL10基因與調控造血相關之細胞激素Flt-3L基因作為免疫佐劑,期望能藉由趨化免疫細胞的能力和促進樹突細胞聚集累積的能力,增加核酸疫苗施打處的局部免疫反應並提升抗原呈現細胞移動至抗原呈現處的機會,進而提高G基因抗原之呈現,提升核酸疫苗之效力。首先在細胞培養實驗中發現,共同轉染G基因與pCXCL10的組別具有較好的G基因表現量,另外預先轉染pCXCL10也可以提升後續感染病毒後病毒G基因之表現量,而從病毒效價(TCID50)測定發現預先轉染pBEFV-G、pCXCL10、pFlt-3L、pNES或mock pcDNA3.1,各為10-4.84 、10-5.30、10-5.25、10-5.37及10-5.37,與對照組(10-5.50)比較並無明顯差異,僅感染pBEFV-G組病毒效價略微降低。
在動物實驗方面,將各類重組DNA載體注射於BALB/c小鼠肌肉組織中,每隔兩週注射一次,總共施打三劑,並固定每週眼窩採血,利用ELISA測試抗病毒抗體效價及中和抗體效價,發現在第一次注射後42天相較於單獨注射pBEFV-G所引發病毒抗體效價 (1:32),pBEFV-G搭配pCXCL10或pFlt-3L基因組別,其效價皆明顯提升 (1:128和1:256),而中和抗體方面 (1:64和1:128) 相較於單獨注射pBEFV-G (1:32) 亦有二到四倍之提升,另外pBEFV-G合併使用pCXCL10和pFlt-3L基因組別,所引發中和抗體效價為1:256,而抗病毒抗體效價更可達1:1024,免疫反應最佳。
Bovine ephemeral fever virus (BEFV) is classified as the genus Ephemerovirus in Rhabdoviridae family. Arthropods, like Culicoides, are the media of the BEFV. The BEFV can cause a sudden onset of fever, depression, lameness, respiration symptoms, increasing in abortions, reducing milk production and death in cattle. It can cause significant economic impact in livestock industry. The vaccine currently used was formaldehyde-inactivated virus of 1984 isolated in Taiwan and added Al(OH)3 as adjuvant for inactivated vaccine. But its protection is not effective enough. We have tried to improve DNA vaccine of BEFV before. The glycoprotein G gene of BEFV was tested as a target gene combined with cytokine genes, e.g. IL-2 and GM-CSF, or combined with CC type chemokine CCL5 and nuclear export signal (NES). The G gene was also fused with VP22 to help spreading G gene. All of these studies showed better immune responses, but the neutralizing antibody responses were not very satisfactory.
This study was aimed to further improve G gene DNA vaccine. CXCL10 , which is a CXC type chemokine, was reported to have ability of attracting leukocytes; while Flt-3L, which is a cytokine related to hematopoiesis, was reported to have ability of accumulating dendritic cells. CXCL10 and Flt-3L were expected to improve local immune response by improving the chance of APC aggregation to the antigen site, that increasing efficiency of DNA vaccination. In cell culture experiments, we found that co-transfection of G gene with pCXCL10 gene could increase G gene expression. Pre-transfection of pCXCL10 before virus infection could also elevate the expression of G gene of virus. However, in virus growth experiment, results (TCID50) of pre-transfection with pBEFV-G, pCXCL10, pFlt-3L, pNES and mock pcDNA3.1 were 10-4.84 , 10-5.30, 10-5.25, 10-5.37 and 10-5.37, respectively. All showed similar viral titers as compared with control group (10-5.50). Only pBEFV-G group showed slightly reducing titer (10-4.84).
The female BALB/c mice were inoculated by i.m. route with several combinations of the above vectors and three immunizations were performed with two-week intervals. Blood samples were weekly collected by orbital bleeding. Sera antibody titers for virus were determined by ELISA and viral neutralization antibody titers were also determined in cell culture. The results showed that mice immunized with pBEFV-G combined with pCXCL10 or pFlt-3L had better anti-virus antibody titers (1:128 and 1:256, respectively) than those with pBEFV-G alone (1:32) 42 days after first immunization. Viral neutralizing antibody titers of the above two groups (1:64 and 1:128, respectively) were also higher than pBEFV-G alone (1:32). Viral antibody titers of the group injected with pBEFV-G, pCXCL10 and pFlt-3L altogether showed highest responses of anti-virus antibody titers and viral neutralizing antibody responses , 1:1024 and 1:256, respectively.
王俊秀及莊士德。台灣獸醫發展史,行政院農業委員會動植物防疫檢局 pp.223-225,2002。
沈雅玲。牛流行熱病毒外套膜醣蛋白G基因DNA疫苗之研究,國立成功大學生命科學研究所碩士論文,pp.13-84,2005。
呂榮修、李永林、黃士則、蔡向榮、廖迂剛、林地發、曾俊憲、宋華
聰。1989年發生在台灣的牛流行熱學研究,台灣畜牧獸醫學會會報,60:51-56,1992。
林朝舜。牛流行性感冒,家畜衛生,台灣省政府農林暨中國村復小聯合委員會編印,pp.54-61,1973。
洪綾蔓。牛流行熱病毒外套膜醣蛋白G基因DNA疫苗之改進:結合單純疱疹病毒VP22基因及使用CpG核苷佐劑之評估,國立成功大學生命科學研究所碩士論文,pp.7-8,2006。
高俊偉。牛流行熱病毒外套膜醣蛋白G基因DNA疫苗之改進:結合趨化素CCL5基因之影響,國立成功大學生命科學研究所碩士論文,pp.1-11,2007。
傅宗經。牛流行熱病毒蛋白的生化研究,國立中興大學獸醫微生物學研究所論文,pp.2-16,1999。
謝耀清。牛流行熱病毒之抗原性分析、疫情監控、快速診斷方法與新型雙價疫苗之研發,國立成功大學生命科學研究所博士論文,pp.94-96,2006。
Barouch D.H., Letvin N.L and Seder R.A. The role of cytokine DNAs as vaccine adjuvants for optimizing cellular immune responses. Immunological Reviews 202:266-274, 2004.
Cantlon J.D., Gordy P.W. and Bowen R.A. Immune responses in mice, cattle, horses to a DNA vaccine for cesicular stomatitis. Vaccine 18:2368-2374, 2000.
Chiu S.Y. and Lu Y.S. The epidemiology of bovine ephemeral fever in Taiwan in 1984. Journal of the Chinese Society of Veterinary Scencei 13:1-9, 1987.
Chiu S.Y. The isolation of bovine ephemeral fever virus in Taiwan in 1984. Journal of the Chinese Society of Veterinary Scencei 12:275-288, 1986.
Cybinski D.H., Walker P.J., Byrne K. and Zakrzewski H. Mapping of antigenic sites on the bovine ephemeral fever virus glycoprotein using monoclonal antibodies. J. Gen. Virol., 71:2065-2072, 1990.
Cybinski D.H., Davis S.S. and Zakrzewski H. Antigenic variation of the bovine ephemeral fever virus glycoprotein. Archives of Virology 124: 211-224, 1992.
Dufour J.D., Dziejman M., Liu M.T., Leung J.H., Lane T.E and Luster A.D. IFN-gamma-inducible protein 10 (IP-10; CXCL10) -deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J. Immun. 168: 3195-3204, 2002.
Encke J., Bernardin J., Geib J., Barbakadze G., Bujdoso R., Stremmel W. Genetic vaccination with Flt3-L and GM-CSF as adjuvants: Enhancement of cellular and humoral immune responses that results in protective immunity in a murine model of hepatitis C virus infection. World J Gastroenterol 12: 7118 -7125, 2006.
Gattass C.R., King L.B., Luster A.D and Ashwell J.D. Constitutive expression of IP-10 in lymphoid organs and inducible expression in T cells andthymocytes. J. Exp. Med. 179:1373, 1994.
Hertig C., Pye A.D., Hyatt A.D., Davis S.S., Mc William S.M., Heine H.G., Walker P.J. and Boyle D.B. Vaccinia virus-expressed bovine ephemeral fever virus G but not GNS glycoprotein induces neutralizing antibodies and protects against experimental infection. The Journal of General Virology 77:631-640, 1995.
Hsieh Y.C., Lee Y.F., Chen C.W., and Chen S.H. Study of glycoprotein gene variation of bovine ephemeral fever virus isolated in southern Taiwan. The 36th Annual Meeting of the Chinese Society of Microbiology, December 15, Taipei, Taiwan, 2002.
Hsieh Y.C., Chen S.H., Chou C.C., Ting L.J., Itakura C. and Wang F.I. Bovine ephemeral fever in Taiwan (2001–2002). The Journal of Veterinary Medical Science 67:411–416, 2005.
Inaba Y. Bovine ephemeral fever (three day sickness)- Stiff sickness, Bull. Intl. Epizootiol 79:627-673, 1973.
Inaba Y., Kurogi H., Sato K., Goto Y., Omori T. and Matumoto M. Formalin-inactivated, aluminum phosphate gel-adsorbed vaccine of bovine ephemeral fever virus. Archiv fur die Gesamte Virusforschung 42:42-53, 1973.
Inaba Y., Kurogi H., Takahashi A., Sato K. and Matumoto M. Vaccination of cattle against bovine ephemeral fever with live attenuated virus followed by killed virus. Archiv fur die Gesamte Virusforschung 44:121-132, 1974.
Kongsuwan K., Cybinski D.H., Cooper J. and Walker P.J. Location of neutralizing epitopes on the G protein of bovine ephemeral fever rhabdovirus. The Journal of General Virology 79:2573-2581, 1998.
Lasagni L., Francalanci M., Annunziato F., Lazzeri E., Giannini S., Cosmi L., Sagrinati C., Mazzinghi B., Orlando C., Maggi E., Marra F., Romagnani S., Serio M and Romagnani P. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J. Exp. Med. 197: 1537–1549, 2003.
Liao Y.K., Inaba Y., Li N.J., Chain C.Y., Lee S.L. and Liou P.P. Epidemiology of bovine ephemeral fever virus infection in Taiwan. Microbiological Research 153:289-295, 1998.
Lucas A.D and Greaves D.R. Atherosclerosis: role of chemokines and Macrophages. Exp. Rev. Mol. Med. 5:62-69, 2001.
Luster A.D., Unkeless J.C and Ravetch J.V. Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 315: 672-676, 1985.
Luther S.A and Cyster J.G. Chemokines as regulators of T cell differentiation, Nat. Immunol. 2:102–107, 2001.
Mackerras I.M., Mackrras J. and Burnet F.M. Experimental studies of ephemeral fever in Australian cattle. Council for Scientific and Industrial Research Melbourne Bulletin, No.136, Australia, 1940.
Maraskovsky E., Brasel K., Teepe M., Roux E.R., Lyman S.D., Shortman K and McKenna H.J. Dramatic increase in the numbers of functionally mature dendritic cells in flt3 ligand-treated mice: Multiple dendritic cell subpopulations identified. J. Exp. Med. 184:1-10, 1996.
Mc William S.M., Kongsuwan K., Cowley J.A., Byrne K.A. and Walker P.J. Genome organization and transcription strategy in the complex GNS-L intergenic region of bovine ephemeral fever rhabdovirus. The Journal of General Virology 78:1309-1317, 1997.
McKenna, H.J., de Vries P., Brasel K., Lyman S.D and Williams D.E. Effect of flt3 ligand on the ex vivo expansion of human CD341 hematopoietic progenitor cells.
Blood 86:3413-3422,1995.
Nandi S., and Negi B.S. Bovine ephemeral fever: a review. Comparative Immunology , Microbiology and Infectious Diseases 22:81-91, 1999.
Nobiron I., Thompson I., Brownlie J. and Collins M.E. Co-administration of IL-2 enhances antigen-specific immune responses following vaccination with DNA encoding the glycoprotein E2 of bovine viral diarrhoea virus. Veterinary Microbiology 76:129-142, 2000.
Pinto A.R., Reyes-Sandoval A and Ertl H.C. Chemokines and TRANCE as genetic adjuvants for a DNA vaccine to rabies virus. Cellular Immunology 224:106-113, 2003.
Robinson H.L., Montefiori D.C., Johnson R.P., Kalish M.L., Lydy S.L., McClure H. M. DNA priming and recombinant pox virus boosters for an AIDS vaccine. Developments in biologicals 104:93-100, 2000.
Sasaki S., Takeshita F., Xin K.Q., Ishii N. and Okuda K. Adjuvant formulations and delivery systems for DNA vaccines. Methods 31:243-254, 2003.
Sato K., Inaba Y., Kurogi H., Omori T. and Yamashino T. Rolling round bottle culture of HmLu-1 cells and the production of bovine ephemeral fever virus. National Institute of Animal Health quarterly 15:109-115, 1975.
Shigihara T., Shimada A., Oikawa Y., Yoneyama H., Kanazawa Y., Okubo Y., Matsushima K., Yamato E., Miyazaki J., Kasuga A., Saruta T and Narumi S. CXCL10 DNA Vaccination Prevents Spontaneous Diabetes through Enhanced Cell Proliferation in NOD Mice. The Journal of Immunology, 175:8401–8408, 2005.
Shurin, M.R., Pandharipande P.P., Zorina T.D., Haluszczak C., Subbotin V., Hunter O., Brumfield A., Storkus W.J., Maraskovsky E and Lotze M.T. FLT3-Ligand induces the generation of functionally active dendritic cells inmice. Cell. Immunol. 179:174, 1997.
St George T.D., Standfast H.A., Christie D.G., Knott S.G. and Morgan I.R. The epizootiology of bovine ephemeral fever in Australia and Papua New Guinea. Australian veterinary journal 53:17-28, 1977.
Smit M.J., Verdijk P., van der Raaij-Helmer E.M., Navis M., Hensbergen P.J., Leurs R., Tensen C.P. "CXCR3-mediated chemotaxis of human T cells is regulated by a Gi- and phospholipase C-dependent pathway and not via activation of MEK/p44/p42 MAPK nor Akt/PI-3 kinase". Blood 102: 1959–1965, 2003.
Theodoridis A., Boshoff S.E.T. and Botha M.J. Syudies on the development of a vaccine against bovine ephemeral fever. The Onderstepoort journal of veterinary research 40:77-82, 1973.
Theodoridis A., Nevill E.M., Els H.J. and Boshoff S.T. Viruses isolated from Culicoides midges in South Africa during unsuccessful attempts to isolate bovine ephemeral fever virus. The Onderstepoort journal of veterinary research 46:191-198, 1979.
Thomas D and Lopez A. Haematopoietic growth factor. Encyclopedia of Life Sciences 19 April, 2001.
Tzipori S. and Spradbrow P.B. Studies on vaccines against bovine ephemeral fever. Australian Veterinary Journal 49:183-187, 1973.
Tzipori S. and Spradbrow P.B. Development and behaviour of a strain of bovine ephemeral fever virus with unusual host range. Journal of Comparative Pathology 84:1-8, 1974.
Tzpori S. and Spradrow P.B. A cell culture vaccine against bovine ephemeral fever. Aust. Vet. J. 54:323-328, 1978.
Uren M.F., Walker P.J., Zakrzewski H., St George T.D. and Byrne K.A. Effective vaccination of cattle using the virion G protein of bovine ephemeral fever virus as an antigen. Vaccine 12:845-850, 1994.
Vanselow B.A., Abetz I. and Trenfield K. A bovine ephemeral fever vaccine incorporating adjuvant Quil A:a comparative study using adjuvants Quil A, aluminium hydroxide gel and dextran sulphate. The Veterinary record 117:37-43, 1985.
Walker P.J., Byrne K.A., Cybinski D.H., Doolan D.L. and Wang Y.H. Proteins of bovine ephemeral fever virus. The Journal of general virology 72:67-74, 1991.
Walker P.J., Byrne K.A., Riding G.A., Cowley J.A., Wang Y. and Mc William S. The genome of bovine ephemeral fever rhabdovirus contains two related glycoprotein genes. Virololy 191:49-61, 1992.
Walker P.J., Wang Y., Cowley J.A., Mc William S.M., and Prehaud C.J.. Structural and antigenic analysis of the nucleoprotein of bovine ephemeral fever rhabdovirus. The Journal of general virology 75:1889-1899, 1994.
Walker P.J. and Konsuwan K. Deduced structural model for animal
rhabdovirus glycoprotein. The Journal of general virology 80:1211-1220,
1999.
Wang Y., Mc William S. M., Cowley J. A., and Walker P. J. Complex genome organization in the GNS-L intergenic region of Adelaide River rhabdoviruses. Virology 203:63-72, 1994.
Wang F.I., Hsu A.M., and Huang K.J. Bovine ephemeral fever in Taiwan . Veterary Diagnosis and Invesigationt 13: 462-467, 2001.
Wildbaum G., Netzer N and Karin N. Genetic fusion of chemokines to a self
tumor antigen induces protective, T-cell dependent antitumor immunity.
The Journal of Immunology, 168: 5885–5892, 2002.
Wolff J.A., Malone R.W., Williams P., Acsadi G., Jani A. and Felgner P.L. Direct gene transfer into mouse and muscle in vivo. Science 23: 1465-1468,
1990.
Yo Y.T., Hsu K.F., Shieh G.S., Lo C.W., Chang C.C., Wu C.L and Shiau A.L.
Coexpression of Flt3 ligand and GM-CSF genes modulates immune responses induced by HER2/neu DNA vaccine. Cancer Gene Therapy 14, 904–917, 2007.
Yoon H.A and Eo S.K. Differential polarization of immune responses by genetic cotransfer of chemokines changes the protective immunity of DNA vaccine against pseudorabies virus. Immunology 120:182-191, 2007.