| 研究生: |
鄧杉 Deng, Shan |
|---|---|
| 論文名稱: |
以磁控濺鍍製作氧化銦鎵鋅摻雜氮之薄膜電晶體 Fabrication of Indium Gallium Zinc Oxide Doping Nitrogen Thin film Transistors by Sputtering |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 氧化銦鎵鋅 、薄膜電晶體 、摻氮 |
| 外文關鍵詞: | InGaZnO, Thin Film Transistor, Nitrogen doped |
| 相關次數: | 點閱:118 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文內容為利用射頻磁控濺鍍法沉積氧化銦鎵鋅薄膜,並討論在通入氮氣和不通入氮氣製程條件下的薄膜特性。因為氧化銦鎵鋅是一種很容易產生氧空位和鋅間隙的材料,所以將氮氣通入到氧化銦鎵鋅薄膜中可以減少氧空位的數量以及所引起的載流子濃度過高和穩定性差的問題。接下來我們製作氧化銦鎵鋅薄膜電晶體。
在實驗結果與討論的部分,首先我們作用二氧化矽作絕緣層,在氧化銦鎵鋅製程分別通入氮氣和氧氣的薄膜電晶體。接下來我們改變氮氣的含量來找到薄膜電晶體最優的轉移特性。最佳的氧化銦鎵鋅的參數實在氮氣含量2%。此時臨界電壓為1V,場效遷移率為5.27cm2V-1S-1。開關電流比相差5個等級,次臨界擺幅在0.98。接下來我們沉積通入氮氣和氧氣的氧化銦鎵鋅薄膜來分析結構特性,光學特性和元素分析三個方面。結構分析方面顯示,氧化銦鎵鋅摻入氮氣的薄膜也和通入氧氣的一樣呈現非晶狀態,薄膜的粗糙度也隨著氮氣的通入而減少。在元素分析上面,隨著氮含量的增加,薄膜中的氧空位數量減少,而且氮元素的含量也比通氧的薄膜要多。最後在光學特性方面,氮氣的通入讓能隙變大,而且薄膜在可見光範圍內的穿透率大約在80%。
在實驗的第二部分,我們在氧化銦鎵鋅薄膜層上覆蓋一個通入氮氣的氧化銦鎵鋅薄膜,形成雙層結構。雙層結構的目的是防止主動層與大氣中的氧氣發生吸附解吸反應,這樣可以提升元件的臨界電壓和場效遷移率。結果顯示,在室溫下場效遷移率高達14.34 cm2V-1S-1,臨界電壓小到0.5V。同時通入了氮氣的氧化銦鎵鋅薄膜電晶體在正電壓的測試下,穩定性要好於通入氧氣的。我們也應用到光電晶體上。
在實驗的第三部分,我們使用了高介電常數的二氧化鉿和氮化矽替換二氧化矽作為絕緣層,以此來減少漏電流和次臨界擺幅。除此之外,我們在主動層和絕緣層之間加了一層二氧化矽作為緩衝層以此來減少界面缺陷。二氧化鉿加二氧化矽緩衝層的顯示開關電流比達到了7個數量級,而且次臨界擺幅優化到0.32。
關鍵字:氧化銦鎵鋅、薄膜電晶體、摻氮。
In this thesis, the indium gallium zinc oxide (InGaZnO) is deposited by RF magnetron sputtering and the film properties are discussed with or without nitrogen doping. Because of the InGaZnO is a material easy to produce oxygen vacancies and zinc interstitial defects, so the nitrogen was doped in InGaZnO films to reduce the vacancies which have caused the problem of exceed carrier concentration and instability. Next, we will use InGaZnO on the thin film transistor fabrication.
In the part of the experimental results and features discussion, first of all, we fabricated InGaZnO TFT doping oxygen and nitrogen with silicon oxide as gate dielectric layer. And changing different nitrogen flow rate to find out the best transfer characteristics. The optimized parameters of InGaZnO TFT is doped 2% N2. Vth is 1V, field effect mobility is 5.27cm2V-1S-1. On/off current ratio is 5 order and SS is 0.98V/decade. Then we deposited two different films with oxygen or nitrogen to analyze thin films properties for three aspects which are structure, optical and element. The structure shows the InGaZnO doping nitrogen is amorphous as same as without nitrogen. Roughness of thin film is lower with nitrogen doped. In elementary analysis, with content of nitrogen increasing, the amount of oxygen vacancies are decrease. And the nitrogen content in doping nitrogen films is higher than doping oxygen. Finally in the optical aspect, the bandgap is become large with nitrogen doped. And the transmittance in the visible light region is around 80%.
In the second part of experiment, we capped InGaZnO doping nitrogen layer on the InGaZnO channel making a double layer structure. The purpose of double layer is to prevent back channel absorb or desorb oxygen with atmosphere, which is a promotion to threshold voltage and field effect mobility. As result, the field effect mobility is high as 14.34 cm2V-1S-1, threshold voltage is 0.5V at room temperature. The positive gate bias stress stability of InGaZnO doping nitrogen are apparently improved comparing with doping oxygen. Also we extend the application to the phototransistors.
In the third part, we use a high dielectric constant of hafnium oxide and silicon nitride replace silicon oxide as gate dielectric to reduce the leakage current and subthreshold swing. Moreover we added a silicon oxide as buffer layer to decrease interface defects between gate dielectric and channel. The transfer characteristics of hafnium oxide as gate dielectric with silicon oxide buffer layer shows on/off current switch ratio up to seven orders. And subthreshold improved to 0.32 V/decade.
Keyword:InGaZnO; Thin Film Transistor; Nitrogen doped
[1] Park, J. S., Kim, K., Park, Y. G., Mo, Y. G., Kim, H. D., & Jeong, J. K. (2009). Novel ZrInZnO Thin‐film Transistor with Excellent Stability.Advanced Materials, 21(3), 329-333.
[2] Nomura, K., Takagi, A., Kamiya, T., Ohta, H., Hirano, M., & Hosono, H. (2006). Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Japanese Journal of Applied Physics, 45(5S), 4303.
[3] Kang, D., Lim, H., Kim, C., Song, I., Park, J., Park, Y., & Chung, J. (2007). Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules. Applied physics letters, 90(19), 192101.
[4] Tsao, S. W., Chang, T. C., Huang, S. Y., Chen, M. C., Chen, S. C., Tsai, C. T., ... & Wu, W. C. (2010). Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors. Solid-State Electronics, 54(12), 1497-1499.
[5] Liu, P. T., Chou, Y. T., & Teng, L. F. (2009). Environment-dependent metastability of passivation-free indium zinc oxide thin film transistor after gate bias stress. Applied Physics Letters, 95(23), 233504.
[6] Shih, Y. C., Qiu, C. X., Shih, I., & Qiu, C. (2007). U.S. Patent No. 7,211,825. Washington, DC: U.S. Patent and Trademark Office.
[7] Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., & Hosono, H. (2004). Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 432(7016), 488-492.
[8] Kamiya, T., Nomura, K., & Hosono, H. (2009). Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping. Journal of display Technology, 5(7), 273-288.
[9] Takagi, A., Nomura, K., Ohta, H., Yanagi, H., Kamiya, T., Hirano, M., & Hosono, H. (2005). Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO 4. Thin solid films, 486(1), 38-41.
[10] Yamazaki, S., Koyama, J., Yamamoto, Y., & Okamoto, K. (2012, June). 15.1: Research, Development, and Application of Crystalline Oxide Semiconductor. In SID Symposium Digest of Technical Papers (Vol. 43, No. 1, pp. 183-186). Blackwell Publishing Ltd.
[11] Yang, Y. H., Yang, S. S., & Chou, K. S. (2010). Characteristic enhancement of solution-processed In–Ga–Zn oxide thin-film transistors by laser annealing. IEEE Electron Device Letters, 31(9), 969-971.
[12] Im, J. S., Sposili, R. S., & Crowder, M. A. (1997). Single-crystal Si films for thin-film transistor devices. Applied physics letters, 70(25), 3434-3436.
[13] Raja, J., Jang, K., Nguyen, C. P. T., Yi, J., Balaji, N., Hussain, S. Q., & Chatterjee, S. (2015). Improvement of Mobility in Oxide-Based Thin Film Transistors: A Brief Review. Transactions on Electrical and Electronic Materials, 16(5), 234-240.
[14] Lee, Y. S., Dai, Z. M., Lin, C. I., & Lin, H. C. (2012). Relationships between the crystalline phase of an IGZO target and electrical properties of a-IGZO channel film. Ceramics International, 38, S595-S599.
[15] Pu, H., Zhou, Q., Yue, L., & Zhang, Q. (2013). Investigation of oxygen plasma treatment on the device performance of solution-processed a-IGZO thin film transistors. Applied Surface Science, 283, 722-726.
[16] Liu, S. E., Yu, M. J., Lin, C. Y., Ho, G. T., Cheng, C. C., Lai, C. M., ... & Yeh, Y. H. (2011). Influence of passivation layers on characteristics of a-InGaZnO thin-film transistors. IEEE Electron Device Letters, 32(2), 161-163.
[17] Yaglioglu, B., Yeom, H. Y., Beresford, R., & Paine, D. C. (2006). High-mobility amorphous In2O3–10wt% ZnO thin film transistors. Applied physics letters, 89(6), 062103.
[18] Sung, S. Y., Choi, J. H., Han, U. B., Lee, K. C., Lee, J. H., Kim, J. J., ... & Heo, Y. W. (2010). Effects of ambient atmosphere on the transfer characteristics and gate-bias stress stability of amorphous indium-gallium-zinc oxide thin-film transistors. Applied physics letters, 96(10), 102107.
[19] Nomura, K., Kamiya, T., & Hosono, H. (2013). Effects of diffusion of hydrogen and oxygen on electrical properties of amorphous oxide semiconductor, In-Ga-Zn-O. ECS Journal of Solid State Science and Technology, 2(1), P5-P8.
[20] Nguyen, T. T. T., Renault, O., Aventurier, B., Rodriguez, G., Barnes, J. P., & Templier, F. (2013). Analysis of IGZO thin-film transistors by XPS and relation with electrical characteristics. Journal of Display Technology, 9(9), 770-774.
[21] Zeng, Y. A., Softic, A., & White, M. H. (2002). Characterization of interface traps in the subthreshold region of implanted 4H and 6H-SiC MOSFETs.Solid-State Electronics, 46(10), 1579-1582.
[22] Rim, Y. S., Jeong, W., Du Ahn, B., & Kim, H. J. (2013). Defect reduction in photon-accelerated negative bias instability of InGaZnO thin-film transistors by high-pressure water vapor annealing. Applied Physics Letters, 102(14), 143503.
[23] Zan, H. W., Li, C. H., Yeh, C. C., Dai, M. Z., Meng, H. F., & Tsai, C. C. (2011). Room-temperature-operated sensitive hybrid gas sensor based on amorphous indium gallium zinc oxide thin-film transistors. Applied Physics Letters, 98(25).
[24] Jiang, J., Furuta, M., & Wang, D. (2014). Self-Aligned Bottom-Gate In—Ga—Zn—O Thin-Film Transistor With Source/Drain Regions Formed by Direct Deposition of Fluorinated Silicon Nitride. IEEE Electron Device Letters,35(9), 933-935.
[25] Song, J., Qian, L., Leung, C., & Lai, P. (2015). Improved electrical characteristics of amorphous InGaZnO thin-film transistor with HfLaO gate dielectric by nitrogen incorporation. Applied Physics Express, 8(6), 066503.
[26] Nag, M., Bhoolokam, A., Steudel, S., Genoe, J., Groeseneken, G., & Heremans, P. (2015). Impact of the low temperature gate dielectrics on device performance and bias-stress stabilities of a-IGZO thin-film transistors. ECS Journal of Solid State Science and Technology, 4(8), N99-N102.
[27] Lee, M. H., Hsu, S. M., Shen, J. D., & Liu, C. (2015). Stress distribution of IGZO TFTs under mechanical rolling using finite element method for flexible applications. Microelectronic Engineering, 138, 77-80.
[28] Kim, S. H., & Kim, D. (2015). Effect of a ZTO buffer layer on the structural, optical, and electrical properties of IGZO thin films. Ceramics International,41(2), 2770-2773.
[29] Yuan, L., Zou, X., Fang, G., Wan, J., Zhou, H., & Zhao, X. (2011). High-Performance Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors With Tristack Gate Dielectrics. IEEE Electron Device Letters, 32(1), 42-44.
[30] Lin, C. P., Tsui, B. Y., Yang, M. J., Huang, R. H., & Chien, C. H. (2006). High-performance poly-silicon TFTs using HfO 2 gate dielectric. IEEE electron device letters, 27(5), 360-363.
[31] Zou, X., Fang, G., Wan, J., He, X., Wang, H., Liu, N., ... & Zhao, X. (2011). Improved Subthreshold Swing and Gate-Bias Stressing Stability of p-Type Thin-Film Transistors Using a High-Gate Dielectric Grown on a Substrate by Pulsed Laser Ablation. IEEE Transactions on Electron Devices, 58(7), 2003-2007.
[32] Su, L. Y., Lin, H. Y., Lin, H. K., Wang, S. L., Peng, L. H., & Huang, J. (2011). Characterizations of amorphous IGZO thin-film transistors with low subthreshold swing. IEEE Electron Device Letters, 32(9), 1245-1247.
[33] Wang, X. Z., Nishimoto, M., Fujii, T., Tominaga, K., Murai, K. I., Moriga, T., & Xu, Y. L. (2015). Deposition of IGZO or ITZO Thin Films by Co-Sputtering of IZO and GZO or ITO Targets. In Advanced Materials Research (Vol. 1110, pp. 197-202). Trans Tech Publications.
[34] Lee, S. H., Oh, D. J., Hwang, A. Y., Han, D. S., Kim, S., Jeong, J. K., & Park, J. W. (2015). Improvement in device performance of a-InGaZnO transistors by introduction of Ca-doped Cu source/drain electrode. IEEE Electron Device Letters, 36(8), 802-804.
[35] Ding, X., Zhang, H., Zhang, J., Li, J., Shi, W., Jiang, X., & Zhang, Z. (2015). IGZO thin film transistors with Al 2 O 3 gate insulators fabricated at different temperatures. Materials Science in Semiconductor Processing, 29, 69-75.
[36] Hsu, C. M., Tzou, W. C., Yang, C. F., & Liou, Y. J. (2015). Investigation of the high mobility IGZO thin films by using co-sputtering method. Materials,8(5), 2769-2781.
[37] Woo, W. J., Nam, T., Jung, H., Oh, I. K., Song, J. G., Maeng, W., & Kim, H. (2016). Effects of TaN Diffusion Barrier on Cu-Gate ZnO: N Thin-Film Transistors. IEEE Electron Device Letters, 37(5), 599-602.
[38] Lin, H. C., Shie, B. S., & Huang, T. Y. (2014). 100-nm IGZO Thin-Film Transistors With Film Profile Engineering. IEEE Transactions on Electron Devices, 61(6), 2224-2227.
[39] Yoon, S., Tak, Y. J., Yoon, D. H., Choi, U. H., Park, J. S., Ahn, B. D., & Kim, H. J. (2014). Study of nitrogen high-pressure annealing on InGaZnO thin-film transistors. ACS applied materials & interfaces, 6(16), 13496-13501.
[40] Jeong, S., Ha, Y. G., Moon, J., Facchetti, A., & Marks, T. J. (2010). Role of gallium doping in dramatically lowering amorphous‐oxide processing temperatures for solution‐derived indium zinc oxide thin‐film transistors.Advanced Materials, 22(12), 1346-1350.
[41] Hwang, S., Lee, J. H., Woo, C. H., Lee, J. Y., & Cho, H. K. (2011). Effect of annealing temperature on the electrical performances of solution-processed InGaZnO thin film transistors. Thin Solid Films, 519(15), 5146-5149.
[42] Chen, W. T., Lo, S. Y., Kao, S. C., Zan, H. W., Tsai, C. C., Lin, J. H., ... & Lee, C. C. (2011). Oxygen-dependent instability and annealing/passivation effects in amorphous In–Ga–Zn–O thin-film transistors. IEEE Electron Device Letters, 32(11), 1552-1554.
[43] Yang, Y. H., Yang, S. S., & Chou, K. S. (2010). Characteristic enhancement of solution-processed In–Ga–Zn oxide thin-film transistors by laser annealing. IEEE Electron Device Letters, 31(9), 969-971.
[44] Ide, K., Kikuchi, Y., Nomura, K., Kimura, M., Kamiya, T., & Hosono, H. (2011). Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors. Applied Physics Letters, 99(9), 093507.
[45] Kikuchi, Y., Nomura, K., Yanagi, H., Kamiya, T., Hirano, M., & Hosono, H. (2010). Device characteristics improvement of a-In–Ga–Zn–O TFTs by low-temperature annealing. Thin Solid Films, 518(11), 3017-3021.
[46] Bae, H. S., Kwon, J. H., Chang, S., Chung, M. H., Oh, T. Y., Park, J. H., ... & Ju, B. K. (2010). The effect of annealing on amorphous indium gallium zinc oxide thin film transistors. Thin Solid Films, 518(22), 6325-6329.
[47] Trinh, T. T., Nguyen, V. D., Ryu, K., Jang, K., Lee, W., Baek, S., ... & Yi, J. (2011). Improvement in the performance of an InGaZnO thin-film transistor by controlling interface trap densities between the insulator and active layer.Semiconductor Science and Technology, 26(8), 085012.
[48] Ueoka, Y., Ishikawa, Y., Bermundo, J. P., Yamazaki, H., Urakawa, S., Osada, Y., ... & Uraoka, Y. (2014). Effect of contact material on amorphous InGaZnO thin-film transistor characteristics. Japanese Journal of Applied Physics, 53(3S1), 03CC04.
[49] Lee, Y. W., Kim, S. J., Lee, S. Y., Lee, W. G., Yoon, K. S., Park, J. W., & Han, M. K. (2012). An investigation of the different charge trapping mechanisms for SiNx and SiO2 gate insulator in a-IGZO TFTs.Electrochemical and Solid-State Letters, 15(4), H84-H87.
[50] Liu, P. T., Chou, Y. T., Teng, L. F., Li, F. H., Fuh, C. S., & Shieh, H. P. D. (2011). Ambient stability enhancement of thin-film transistor with InGaZnO capped with InGaZnO: N bilayer stack channel layers. IEEE Electron Device Letters, 32(10), 1397-1399.
[51] Tiwari, N., Chauhan, R. N., Shieh, H. P. D., Liu, P. T., & Huang, Y. P. (2016). Photoluminescence and Reliability Study of ZnO Cosputtered IGZO Thin-Film Transistors Under Various Ambient Conditions. IEEE Transactions on Electron Devices, 63(4), 1578-1581.
[52] Chen, Y. J., Tai, Y. H., & Chang, C. Y. (2016). Mechanism of Hysteresis for a-IGZO TFT Studied by Changing the Gate Voltage Waveform in Measurement. IEEE Transactions on Electron Devices, 63(4), 1565-1571.
[53] Hsu, C. C., Chen, H. P., & Ting, W. C. (2016). Correlation Between Carrier Concentration Distribution, I–V and C–V Characteristics of a-InGaZnO TFTs.Journal of Display Technology, 12(4), 328-337.
[54] Liu, P. T., Chou, Y. T., Teng, L. F., Li, F. H., & Shieh, H. P. (2011). Nitrogenated amorphous InGaZnO thin film transistor. Applied Physics Letters, 98(5), 052102.
[55] Wu, C. Y., Cheng, H. C., Wang, C. L., Liao, T. C., Chiu, P. C., Tsai, C. H., ... & Lee, C. C. (2012). Reliability improvement of InGaZnO thin film transistors encapsulated under nitrogen ambient. Applied Physics Letters, 100(15), 152108.
[56] Liu, P. T., Chou, Y. T., Teng, L. F., Li, F. H., Fuh, C. S., & Shieh, H. P. D. (2011). Ambient stability enhancement of thin-film transistor with InGaZnO capped with InGaZnO: N bilayer stack channel layers. IEEE Electron Device Letters, 32(10), 1397-1399.
[57] Raja, J., Jang, K., Balaji, N., & Yi, J. (2013). Suppression of temperature instability in InGaZnO thin-film transistors by in situ nitrogen doping.Semiconductor Science and Technology, 28(11), 115010.
[58] Raja, J., Jang, K., Balaji, N., Hussain, S. Q., Velumani, S., Chatterjee, S., ... & Yi, J. (2015). Aging effects on the stability of nitrogen-doped and un-doped InGaZnO thin-film transistors. Materials Science in Semiconductor Processing, 37, 129-134.
[59] Raja, J., Jang, K., Balaji, N., Trinh, T. T., & Yi, J. (2013). Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors.Applied Physics Letters, 102(8), 083505.
[60] Huang, X., Wu, C., Lu, H., Ren, F., Chen, D., Zhang, R., & Zheng, Y. (2013). Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultra-thin interfacial InGaZnO: N layer. Applied Physics Letters, 102(19), 193505.
[61] Yoon, D. H., Kim, S. J., Kim, D. L., Heo, S. J., & Kim, H. J. (2011). Quenching Effects on the Solution-Processed In-Ga-Zn-O System.Electrochemical and Solid-State Letters, 14(9), E28-E30.
[62] Kim, C. E., & Yun, I. (2012). Effects of nitrogen doping on device characteristics of InSnO thin film transistor. Applied Physics Letters, 100(1), 013501.
[63] Zhang, X. A., Zhang, J. W., Zhang, W. F., Wang, D., Bi, Z., Bian, X. M., & Hou, X. (2008). Enhancement-mode thin film transistor with nitrogen-doped ZnO channel layer deposited by laser molecular beam epitaxy. Thin Solid Films, 516(10), 3305-3308.
[64] Ji, K. H., Kim, J. I., Mo, Y. G., Jeong, J. H., Yang, S., Hwang, C. S., ... & Jeong, J. K. (2010). Comparative Study on Light-Induced Bias Stress Instability of IGZO Transistors With and Gate Dielectrics. IEEE Electron Device Letters, 31(12), 1404-1406.
[65] Choi, H. S., Jeon, S., Kim, H., Shin, J., Kim, C., & Chung, U. I. (2011). Verification of interface state properties of a-InGaZnO thin-film transistors with and gate dielectrics by low-frequency noise measurements. IEEE Electron Device Letters, 32(8), 1083-1085.
[66] Kamiya, T., Nomura, K., & Hosono, H. (2016). Present status of amorphous In–Ga–Zn–O thin-film transistors. Science and Technology of Advanced Materials.
[67] Raja, J., Jang, K., Balaji, N., Trinh, T. T., & Yi, J. (2013). Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors.Applied Physics Letters, 102(8), 083505.
[68] Fuh, C. S., Liu, P. T., Chou, Y. T., Teng, L. F., & Sze, S. M. (2013). Role of Oxygen in Amorphous In-Ga-Zn-O Thin Film Transistor for Ambient Stability.ECS Journal of Solid State Science and Technology, 2(1), Q1-Q5.
[69] Conley, J. F. (2010). Instabilities in amorphous oxide semiconductor thin-film transistors. IEEE Transactions on Device and Materials Reliability, 10(4), 460-475.
[70] Chen, T. C., Chang, T. C., Hsieh, T. Y., Tsai, C. T., Chen, S. C., Lin, C. S., ... & Chen, P. L. (2010). Light-induced instability of an InGaZnO thin film transistor with and without SiOx passivation layer formed by plasma-enhanced-chemical-vapor-deposition. Applied Physics Letters, 97(19), 192103.
[71] Hong, D., & Wager, J. F. (2005). Passivation of zinc–tin–oxide thin-film transistors. Journal of Vacuum Science & Technology B, 23(6), L25-L27.
[72] Kang, D., Lim, H., Kim, C., Song, I., Park, J., Park, Y., & Chung, J. (2007). Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules. Applied physics letters, 90(19), 192101.
[73] Hirai, M., & Kumar, A. (2007). Effect of nitrogen doping on bonding state of ZnO thin films. Journal of Vacuum Science & Technology A, 25(6), 1534-1538.
[74] Jeong, J. K., Yang, S., Cho, D. H., Park, S. H. K., Hwang, C. S., & Cho, K. I. (2009). Impact of device configuration on the temperature instability of Al–Zn–Sn–O thin film transistors. Applied Physics Letters, 95(12), 123505.
[75] Tsai, C. T., Liu, P. T., Chang, T. C., Wang, C. W., Yang, P. Y., & Yeh, F. S. (2007). Low-temperature passivation of amorphous-silicon thin-film transistors with supercritical fluids. IEEE electron device letters, 28(7), 584-586.
[76] Indluru, A., & Alford, T. L. (2010). High-temperature stability and enhanced performance of a-Si: H TFT on flexible substrate due to improved interface quality. IEEE Transactions on Electron Devices, 57(11), 3006-3011.
[77] Chang, G. W., Chang, T. C., Jhu, J. C., Tsai, T. M., Syu, Y. E., Chang, K. C., ... & Hung, Y. C. (2012). Abnormal subthreshold leakage current at high temperature in InGaZnO thin-film transistors. IEEE Electron Device Letters,33(4), 540-542.
[78] Chong, E., Park, K. H., Cho, E. A., Choi, J. Y., Kim, B., You, D. Y., ... & Lee, S. Y. (2012). Correlation between the stability and trap parameters of amorphous oxide thin film transistors. Microelectronic Engineering, 91, 50-53.
[79] Takechi, K., Nakata, M., Eguchi, T., Yamaguchi, H., & Kaneko, S. (2009). Temperature-dependent transfer characteristics of amorphous InGaZnO4 thin-film transistors. Japanese Journal of Applied Physics, 48(1R), 011301.
[80] Chien, J. F., Chen, C. H., Shyue, J. J., & Chen, M. J. (2012). Local Electronic Structures and Electrical Characteristics of Well-Controlled Nitrogen-Doped ZnO Thin Films Prepared by Remote Plasma In situ Atomic Layer Doping. ACS applied materials & interfaces, 4(7), 3471-3475.
[81] Jeong, J. K., Yang, H. W., Jeong, J. H., Mo, Y. G., & Kim, H. D. (2008). Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors. Applied Physics Letters, 93(12), 123508.
[82] Ryu, M. K., Yang, S., Park, S. H. K., Hwang, C. S., & Jeong, J. K. (2009). High performance thin film transistor with cosputtered amorphous Zn–In–Sn–O channel: Combinatorial approach. Applied Physics Letters, 95(7), 072104.
[83] Cho, Y. J., Shin, J. H., Bobade, S. M., Kim, Y. B., & Choi, D. K. (2009). Evaluation of Y 2 O 3 gate insulators for a-IGZO thin film transistors. Thin Solid Films, 517(14), 4115-4118.
校內:2018-08-10公開