簡易檢索 / 詳目顯示

研究生: 張德威
Chang, De-Wei
論文名稱: 淨水程序對藍綠菌細胞破壞及其代謝物去除之研究
Disruption of Cyanobacteria Cells and Removal of their Metabolites in the Water Treatment Processes
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 135
中文關鍵詞: β-cyclocitral細胞完整性(Cell integrity)螢光顯微鏡(Fluorescence microscope)加氯氧化(Chlorination)
外文關鍵詞: Chlorination, Cell integrity, epifluorescence icroscope, β-cyclocitral
相關次數: 點閱:218下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討於飲用水處理程序中,當藍綠菌受到氯及不同流程處理後,細胞破損之程度與其胞內代謝物釋出及移除之相關性。研究中以氯作為氧化劑,針對國內優養化程度較為嚴重之水源及其淨水程序作為研究對象,包括金門太湖、榮湖、嘉義蘭潭、公園淨水廠,並以該自來水水源中兩種產臭或毒之藍綠菌做為研究對象,包括微囊藻(Microcystis sp.)、柱孢藻(Cylindrospermopsis sp.),所觀測之微囊藻具有產高濃度β-cyclocitral的能力,而柱孢藻所會產生之代謝物目前還未對其進行偵測。
    研究中藍綠菌被氯及淨水程序所破壞及移除之程度,以細胞完整性(cells integrity)來作表示,並應用螢光染劑FDA(fluorescein diacetate)及SYTOX Green nucleic acid stain搭配螢光顯微鏡(Epifluorescence microscope, EFM),測試其細胞完整程度,以判定細胞完整情形。在代謝物分析方面,應用固相微萃取法(solid phase micro-extraction, SPME)搭配氣相層析質譜儀(gas chromatograph /mass spectrometry detector, GC/MSD)對β-cyclocitral進行分析,以及應用酵素連結免疫吸附法(Enzyme-Linked ImmunoSorbent Assay, ELISA)來分析藻類毒素的濃度。
    研究結果發現,氯對於兩種藻細胞破壞效果不同,其中微囊藻的抗氯氧化力較低,而柱孢藻對於氯則具有較強的抗氧化力;整體而言,當氯劑量為6 mg/L及2.5 mg/L對於微囊藻進行氧化,接觸時間僅1分鐘即會有60%以上的細胞遭到氯的破壞,但在相同劑量下,柱孢藻需經過氧化15分鐘以上才可破壞其完整性之60%。在淨水流程方面,經過浮除(Air Flotation)程序後之細胞完整性可降至10%,且可去除90%以上之藻體細胞;經過過濾(Sand filtration)程序後,可將細胞完整性降至0%並且去除99%以上的藻體細胞。在微囊藻代謝物β-cyclocitral偵測上,發現當氧化進行於1分鐘時,水體中β-cyclocitral的總濃度將會上升,推測氯是同時氧化原水中的有機物與破壞微囊藻細胞,但是無法抑制β-carotene oxygenase活性,因此其仍能催化β-carotene與氧氣(O2)反應產生β-cyclocitral,使濃度升高;而β-cyclocitral濃度也將隨著氧化時間的增加而減少,推測是因氯開始抑制水中微囊藻體內的β-carotene oxygenase活性,使其無法催化β-carotene與氧氣的反應而無法產生β-cyclocitral,因此濃度逐漸降低。在淨水流程方面,過濾(Sand filtration)是去除β-cyclocitral最主要的方式之一,其機制包括對於藻體的篩除及其他生物性的分解作用。經過過濾(Sand filtration)後的原水其β-cyclocitral之濃度可降至人體嗅覺閥值的上限5 ng/L以下。在微囊藻毒素部分,發現隨著細胞破裂,毒素隨即釋出至水中,部分會在流程中隨著細胞,部分溶解態則會在過濾程序中被去除;至於柱孢藻毒素部分,則因為水樣中濃度均甚低,因此無法完整看出其降解情形。

    The effect of prechlorination on the cell integrity and metabolite removal in the water treatment plant (WTP) is investigated. Sodium hypochloride was used to oxidize the raw water of five water treatmemt plants, including Tai-Hu and Long lake WTP inKimmen, Lan-Tan and Kung-Yuan DWTP in Chia-yi,and Nan-Hua in Tainan. Two commony observed nauseous cyanobacteria, including Microcystis sp., and Cylindrospermopsis sp., were monitored for their cell integrity ans metabolite release along the treatment processes.
    A fluorescence technique, combining fluorescein diacetate (FDA) and SYTOX with epifluorescence microscope, was successfully developed for the determination of cell integrity. A solid-phase microextraction (SPME) concentration followed by a gas chromatograph (GC) and mass spectrometric detector (MSD) was employed to measure a metabolite from the Microcystis, b-cyclocitral. An enzyme linked sorbentimmuno assay (ELISA) method was used for the determination of two cyanotoxins, including microcystin-LR and cylindrospermopsin, in this study.
    A series of chlorination of cyanobacteria-laden raw water from the five WTPs was conducted at the dosage used in the field.During the experiments, chlorine concentration, cell integrity, metabolite concentration, and other water quality parameters were monitored at different time. The experimental results revealed that Microcystis cells are very fragile to chlorine. At an initial chlorine concentration of 6 and 2.5 mg/L, more than 60% of Microcystis cells were ruptured at 1 minute, causing immediate release of metabolites from the cells. For Cylindrospermopsis, however, is more resistant to chlorine. Only 40% of cells were ruptured when it had the same concentration of chlorine and the contact time had more than 15 minutes. In the water treatment process, only 10 % of cells remained integral after air flotation, with 90% of cells were removed from the raw water. After slow sand filtration, more than 99% cells were removed, with almost all the the cells being ruptured.
    For the metabolite of Microcystis, β-cyclocitral, the concentration increased after pre-chlorination, and decreased in the following processes. Slow sand filtration is the major process for removing β-cyclocitral, probably due to microbial degradation. β-cyclocitral concentrations were found to be < 5 ng/L after slow sand filters. For another metabolite of Microcystis, microcystin-LR (MC-LR) immediately was released into the water after cells were ruptured. A portion of cell-bound MC-LR was removed together with integral cells in the treatment processes, and however, another portion of dissolved MC-LR was removed due to biological processes in the filters. For the CYN from cylindrospermopsin, no trend for the removal in WTP can be observed as the concentration was too low.

    摘要 I Abstract III 致謝 V 目錄 VII 表目錄 XI 圖目錄 XII 第一章 前言 1 1-1 研究緣起 1 1-2 研究目的 3 第二章 文獻回顧 5 2-1 藍綠細菌毒素與臭味之來源、種類與化學構造 5 2-2 毒素與土霉味物質之人體健康風險 16 2-2-1 毒素部份 16 2-2-2 臭味物質部份 20 2-3 藻類毒素與臭味物質之分析方法 21 2-3-1 毒素部份 21 2-3-2 臭味物質分析方法 24 2-4 氧化處理研究現況與處理效果 25 2-4-1 藻類毒素物質處理 25 2-4-1-1 氧化劑對藻體破壞之作用 32 2-4-1-2 溶解性代謝物去除 26 2-4-2 藻類臭味物質處理 28 2-4-2-1 氧化法 28 2-4-2-2 活性碳吸附法 30 2-4-2-3 傳統處理程序 31 2-5 國內水體現況及相關研究 33 2-6 螢光染色應用於藻體觀測 34 2-7 螢光顯微鏡(Epifluorescence Microscope,EFM) 38 第三章 實驗設備與方法 41 3-1 藍綠菌細胞完整性觀察 43 3-2 臭味物質分析 47 3-2-1 固相微萃取法 47 3-2-2 固相微萃取法試劑與設備 48 3-3 毒素分析-ELISA 50 3-4 葉綠素-a分析 52 3-4-1 乙醇萃取法 52 3-5 藍綠菌計數 53 3-5-1 微囊藻計數 53 3-5-2 柱孢藻計數 53 3-5-3 血球計數器 53 3-6 淨水廠介紹及處理流程採樣方式 55 3-6-1 金門地區地理位址及相關水質資料 55 3-6-2 嘉義地區地理位址及相關水質資料 57 3-7 次氯酸鈉氧化實驗方法 59 3-7-1 氧化實驗 59 第四章 結果與討論 61 4-1 次氯酸鈉對微囊藻之作用 61 4-1-1 太湖淨水廠 - 微囊藻數 130,000、442,500 cells/mL62 4-1-1-1 氯與細胞完整性變化 62 4-1-1-2 代謝物釋出情形 66 4-1-2 榮湖淨水廠 - 微囊藻數160,000 cells/mL 70 4-1-2-1 氯與細胞完整性變化 70 4-1-2-2 代謝物釋出情形 72 4-1-3 蘭潭淨水廠 - 微囊藻數 21,000 cells/mL 73 4-1-3-1 氯與細胞完整性變化 73 4-1-3-2 代謝物釋出情形 75 4-1-4 公園淨水廠 - 微囊藻數 16,000 cells/mL 76 4-1-4-1 氯與細胞完整性變化 76 4-1-4-2 代謝物釋出情形 78 4-1-5 以氯氧化微囊藻體動力模式初步探討 79 4-1-6 以氯氧化淨水廠原水之初步結論 85 4-2 淨水流程對細胞完整性及代謝物去除之作用 87 4-2-1 太湖淨水廠 88 4-2-1-1 細胞完整性變化 88 4-2-1-2 代謝物質於淨水程序中去除情形 92 4-2-2 榮湖淨水廠 97 4-2-2-1 細胞完整性變化 97 4-2-1-2 代謝物質於淨水程序中去除情形 100 4-2-3 蘭潭淨水廠 103 4-2-3-1 細胞完整性變化 103 4-2-3-2 代謝物質於淨水程序中去除情形 106 4-2-4 公園淨水廠 109 4-2-4-1 細胞完整性變化 109 4-2-4-2 代謝物質於淨水程序中去除情形 112 4-2-5 淨水流程對微囊藻去除之動力模式 114 4-2-6 淨水流程對於藻體及其代謝物去除之初步結論 118 4-3 氧化及淨水流程對柱孢藻細胞活性及代謝物去除之作用 120 4-3-1 次氯酸鈉對柱孢藻之作用 121 4-3-2 淨水流程對柱孢藻細胞完整性及代謝物去除之作用 124 第五章 結論與建議 127 5-1 結論 127 5-2 建議 128 參考文獻 130

    Ashworth, C.T. and Mason, M.F. (1946), Observation on the pathological changes produced by a toxic substance present in blue-green algae (Microcystis aeruginosa), American Journal of Physiology, Vol. 22, pp. 369-383.
    Berg, K., Carmichael, W.W., Skulberg, O.M., Benested, C. and Underlal, B. (1987), Investigation of a toxin water bloom of Microcystis aeruginosa (cyanophyceae) in lake Akersvatn, Norway, Hydrobiologia, Vol. 144, pp. 97-103.
    Burch, M. (2002), Cyanobacterial Toxins- The Australian perspective on guidelines and management, in Blue-Green Algae: their significance and management within water supplies, Occasional Paper 4, The Cooperative Research Center for Water Quality and Treatment, 15-22.
    Carmichael W. W. (2001) Assessment of Blue-Green Algal Toxins in Raw and Finished Drinking Water #256, AWWA Research Foundation.
    Carmichael, W.W., Azevedo, M.F.O., An, J.S., Molica, R.J.R., Jochimsen, E.M., Lau, S., Rinehart, K.L., Shaw, G.R., Eagelsham, G.K. (2001) Human Fatalities from Cyanobacteria: Chemical and Biological Evidence for Cyanotoxins. Environmental Health Perspectives. 109 (7):663-668.
    Carmichael, W.W., Eschedor, J.T., Patterson, G.M.L. and Moore, R.E. (1988), Toxicity and partial structure of a hepatotoxic peptide produced by the cyanobacterium Nodularia spumigena Mertens emend. L575 from New Zealand, Applied and Environmental Microbiology, Vol. 54, pp. 2257-2263.
    Chorus, I. (2005) (ed.) Current Approaches to Cyanotoxin Risk assessment, Risk Management and Rregulations in Different Countries, Federal Environmental Agency, Berlin, Germany (http://www.umweltbundesamt.de)
    Chow, C., Panglish, S., Mole, J., Drikas, M., Burch, M. and Gimbel, R. (1997), A study of membrane filtration for the removal of cyanobacterial cells, Journal of Water SRT-Aquatic, Vol. 46, pp. 324-334.
    Cooperative Research Center (CRC) for Water Quality and Treatment (2004) Blue Green Algae: A Guide.
    Cooperative Research Center (CRC) for Water Quality and Treatment (2001) Evalution of Analytical Methods for Detection and Quantification of Cyanotoxins in Relation to Australian Drinking Water Guidelines.
    Daley, R.J., Hobbie, J.E., (1975), Direct counts of aquatic bacteria by a modified epifluorescence technique. Limnol. Oceanorg, No. 20, pp. 875-882.
    Drikas, M. and Hrudey, S. (1994), Control and removal of toxins: Summary of discussions, Toxic Cyanobacteria Current Status of Research and Management, American Water Works Association Research Fundation.
    Drikas, M., Newcombe, G., and Nicholson, B. (2002) Water Treatment Options for Cyanobacteria and Their Toxins, In Blue-Green Algae: Their significance and management within water supplies, The Cooperative Research Centre for Water Quality and treatment, Occasional Paper 4.
    Falconer, I.R. (1996), Potential impact on human health of toxic cyanobacteria, Phycologia, Vol. 35, pp. 6-11.
    Falconer, I.R. (2005), Cyanobacterial Toxins of Drinking Water Supplies: Cylindrospermopsins and Microcystins, CRC Press, Boca Raton, FL., US.
    Fastner, J., Heinze, R. and Chorus, I. (1995), Microcystin-content, hepatotoxicity and cytotoxicity of cyanobacteria in some german water bodies, Water Science Technology, Vol. 32, No. 4, pp. 165-170.
    Glaze, W. H. (1990), Chemical Oxidation, In Water Quality and Treatment, Chapter 12, American Water Works Association, McGraw-Hill, New York, US.
    Grosse, Y., Baan, R., Straif, K., Secretan, B., El Ghissassi, F., and Cogliano, V. (2006) Carcinogenicity of nitrate, nitrite, and cyanobacterial peptide toxins, Oncology, 7, 628-629.
    Haider, S., Naithani, V., Viswanathan, P.N. and Kakkar, P. (2003), Cyanobacterial toxins: a growing environmental concern, Chemosphere, Vol. 52, pp. 1-21.
    Health Canada (2002) Guidelines for Canadian Drinking Water Quality: Supporting Documentation.
    Hernández, M., Macia, M., Padilla, C. and Campo, F.F.D. (2000), Short Communication:modulation of human polymorphonuclear leukocyte adherence by cyanopeptide toxins, Environmental Research Section, Vol. A84, pp. 64-68.
    Hitzfeld, B.C., Hoger, S.J. and Dietrich, D.R. (2000), Cyanobacterial Toxins: Removal during Drinking Water Treatment, and Human Risk Assessment, Environmental Health Perspectives, Vol. 108, pp. 113-122.
    Ho, L., Gaudieux, A.L., Fanok, S., Newcombe, G. and Humpage, A.R. (2007), Bacterial degradation of microcystin toxins in drinking water eliminates their toxicity, Vol. 50, pp. 438-441.
    House, J., Ho, L., Newcombe, G., Burch, M. (2005) Strategies and Practices for Management of Toxic Blue-Green Algae: A Guide- Draft, Australian Water Quality Centre.
    Hummert, C., Dahlmann, J., Reichelt, M. and Luckas, M. (2001), Analytical techniques for monitoring harmful cyanobacteria in lakes, Lakes and Reservoirs: Research and Management, Vol. 6, pp. 159-168.
    Hummert, C., Reichelt, M., Weiβ, J., Liebert, H. And Luckas, B. (2001), Identification of microcystins in cyanobacteria from the Bleiloch former drinking-water reservoir (Thuringia Germany), Chemosphere, Vol. 44, pp. 1581-1588.
    James, K.J., Furey, A., Sherlock, I.R., Stack, M.A., Twohig, M., Caudwell, F.B. and Skulberg, O.N. (1998), Sensitive determination of anatoxin-a, homoanatoxin-a and their degradation products by liquid chromatography with fluorimetric detection, Journal of Chromatography A, Vol. 798, pp. 147-157.
    Juttner, F., and Watson, B., (2007), Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Applied and Environmental Microbiology., Jul, pp. 4395-4406.
    Maatouk, I., Bouaicha, N., Fontan, D. and Levi, Y. (2002), Seasonal variation of microcystin concentrations in the saint-caprais reservoir (France) and their removal in a small full-scale treatment plant, Water Research, Vol. 36, pp. 2891-2897.
    Maizels, M. and Budde, W.L. (2004), A LC/MS Method for the Determination of Cyanobacteria Toxins in Water, Analysis Chemistry, Vol. 76, pp. 1342-1351.
    Mc Feters, G.A., Yu, F.P., Pyle, B.H., and Stewart, P.S., (1995), Physiological assessment of bacteria using fluorochromes. J. Microbiol. Meth, No. 21, pp. 1-13.
    Newcombe, G. (2005) Treatment of Cyanobacteria and Cyanotoxins in Drinking Water, Proceedings of The First Internal Conference on Sustainable Water Environment: Water Resource and Quality Management, Nov. 2-4, 2005, Taipei, Taiwan (ROC)
    Newcombe, G., Nicholson, B. (2004) Water Treatment Options for Dissolved Cyanotoxins, Journal of Water Supply: Research and Technology-Aqua, 227-239.
    Nicholson, B. and Shaw, G. (2002), Instrumental Methods for the Determination of Cyanobacterial Toxins, in Blue-Green Algae: their significance and management within water supplies, Occasional Paper 4, The Cooperative Research Center for Water Quality and Treatment, 61-73.
    Orr, P.T., Jones, G.J., Hunter, R.A., Berger, K., De Paoli, D.A. and Orr, C.L.A. (2001), Ingestion of toxic Microcystis aeruginosa by dairy cattle and the implications for microcystin contamination of milk, Toxicon, Vol. 39, pp. 1847-1854.
    Porter, K.G., and Feig, Y.C., (1980), The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr, No. 25, pp. 943-948.
    Rodríguez, E., Sordo, A., Metcalf, J.S., Acero, J.L. (2007) Kinetics of the oxidation of cylindrospermopsin and anatoxin-a with chlorine, monochloramine and permanganate, Water Research, 41,2048 – 2056
    Rouhiainen, L., Vakkilainen, T., Siemer, B.L., Buikema, W., Haselkorn, R. and Sivonen, K. (2004), Genes Coding for Hepatotoxic Heptapeptides (Microcystins) in the Cyanobacterium Anabaena Strain 90, Applied and Environmental Microbiology, Vol. 70, No. 2, pp. 686-692.
    Sommerburg, O., C. D. Langhans, et al. (2003). "beta-Carotene cleavage products after oxidation
    mediated by hypochlorous acid-a model for neutrophil-derived degradation." Free Radical Biology
    and Medicine 35: 1480-1490.
    USEPA (2001), Creating a Cyanotoxin Target List for the Unregulated Contaminant Monitoring Rule.
    Vasas, G., Gaspar, A., Pager, C., Suranyi, G..,Mathe, C., Hamvas, M.M. and Borbely, G. (2004), Analisis of cyanobacterial toxins (anatoxin-a, cylindrospermopsin, microcystin-LR) by capillary electrophoresis, Electrophoresis, Vol. 25, pp. 108-115.
    Villatte, F., Schulze, H., Schmid, R.D. and Bachmann, T.T. (2002), A disposable acetylcholinesterase-based electrode biosensor to detect anatoxin-a(s) in water, Analytical and Bioanalytical Chemistry, Vol. 372, pp. 322-326.
    Weinbauer, M.G., Beckmann, C., and Hofle, M.G., (1998), Utility of green fluorescent nucleic acid dyes and aluminium oxide membrane filters for rapid epifluorescence enumeration of soil and sediment bacteria. Appl. Environ. Microbiol, No. 64, pp. 5000-5003.
    Wheeler, R.E., Lackey, J.B. and Schott, S.A. (1942), Contribution on the toxicity of algae, Public Healthy Report, Vol. 57, pp. 1695-1701.
    WHO (1998), WHO Guidelines for Drinking-Water Quality: Recommendations, 2nd edn. World Health Organization, Geneva.
    Yen, H.K., Lin, T.F., Tseng, I.C., Tung, S.C., Hsu, M.H., and Liao, P.C., (2004) Occurrence of Algal Toxins and Odorants in Two Reservoirs in South Taiwan, The 10th International Drinking Water Quality Management and Treatment Technology, Taipei, Taiwan.
    Zimmermann, R., and Meyer-Reil L.A., (1974), A new method for fluorescence staining of bacterial populations on membrane filters. –Kiel. Meeresforsch., No. 30, pp. 24-27.
    王奕軒 (2006) 自來水中木頭味物質B-cyclocitral 之來源與去除之研究,國立成國大學環境工程系,碩士論文。
    連紹凱 (2008) 前加氯對三種藍綠菌菌體破壞及其代謝物釋出之研究,國立成國大學環境工程系,碩士論文。
    曾韻璇 (2008) 前氧化對兩種產毒藍綠菌破壞及其代謝物釋出之研究,國立成國大學環境工程系,碩士論文。
    行政院環保署(2003),台灣地區環境水質監測年報:水庫水質篇。
    吳俊宗 (2004a),翡翠水庫藻類與水質關係之長期監測報告(IV),中央研究院植物所。
    吳俊宗 (2004b),藻類與金沙地區自來水水質關係之探討,中央研究院植物所。
    林財富(2002),水中geosmin與methylisoborneol檢測方法建立,行政院環境保護署。
    林財富、張怡怡(2002),自來水配水管網中影響感官物質之調查與改善對策,行政院環境保護署。
    國家衛生研究院(2004) 國家衛生研究院電子報 第 65 期。
    陳是瑩、曾怡禎 (1982) 澄清湖浮游植物的生態及其生產量之研究I:澄清湖浮游植物的季節性變化與阻塞水場濾池藻類之研究”, 生物科學, 第19卷, pp.1-20.
    溫清光(2005)以生態工法去除水庫集水區營養源研究計畫,第一次工作進度報告,行政院環保署。

    下載圖示 校內:立即公開
    校外:2008-08-19公開
    QR CODE