| 研究生: |
何婉禎 Ho, Wan-Chen |
|---|---|
| 論文名稱: |
探討三磷酸腺苷敏感型鉀離子通道與多巴胺受體之間在帕金森氏症中由左旋多巴胺誘發之運動障礙中扮演的角色 Investigation the interaction between KATP channels and dopamine receptors in levodopa-induced dyskinesia (LID) |
| 指導教授: |
陳珮君
Chen, Pei-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 帕金森氏症 、左旋多巴胺誘發運動障礙 、三磷酸腺苷敏感型鉀離子通道 、多巴胺受體 |
| 外文關鍵詞: | Parkinson’s disease, L-DOPA-induced dyskinesia, KATP channel, dopamine receptor |
| 相關次數: | 點閱:82 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
帕金森氏症是一種神經退化性疾病,成因為調控運動功能的黑質及尾狀核/殼核末端中多巴胺神經元傳導路徑受損,導致多巴胺分泌不足。左旋多巴胺 (L-DOPA)是一般常見治療帕金森氏症的藥物,用於補足多巴胺濃度,但服用左旋多巴胺6至10年會使患者出現不穩定運動的副作用,稱為左旋多巴胺誘發運動障礙,而先前的研究有發現,D1和D2受體反應的不平衡會導致此副作用。三磷酸腺苷敏感型鉀離子通道表現在許多組織中,其中有包含大腦,且已知此通道會去影響在多巴胺神經中的陣發放電。在實驗室先前的研究已經發現三磷酸腺苷的開放劑Diazoxide在6-羥多巴胺 (6-OHDA)受損所建立的單側帕金森氏症動物模式中可以減緩左旋多巴胺誘發運動障礙。因此,我們想要了解三磷酸腺苷敏感型鉀離子及多巴胺受體如何去影響左旋多巴胺誘發運動障礙及兩者之間的關係,我們發現阻斷劑Glibenclamide增加了在紋狀體中D3受體及Kir6.2的表達量但Diazoxide減少D3受體及Kir6.2,並且在細胞實驗中也發現,處理過D3受體的激動劑後SUR1及Kir6.2的表達量上升。
Parkinson’s disease (PD) is a neurodegenerative disease caused by the loss of dopamine neurons in the nigrostriatal pathway. The projection of this pathway is from the substantia nigra to the dorsal striatum that fine-tunes our movement. The degeneration of this pathway provokes low dopamine that leads to PD’s symptoms. Levodopa (L-DOPA) prescription is the typical therapy for PD patients to increase DA. Unfortunately, when PD patients have taken this medicine for 6 to 10 years, they would have a side effect called L-DOPA-induced dyskinesia (LID). Some studies show that the imbalance of dopamine pathway (D1 and D2 pathway) may cause LID. KATP channels are expressed in many tissues including the brain. It is known that KATP channels can affect bursting firing in DA neurons. The previous data in our lab found out that implantation with mini osmotic pumps containing KATP channels opener, diazoxide alleviates LID using 6-OHDA-lesioned mice. We want to know how the KATP channel and DA pathway affect LID and the relationship between KATP channels and DA receptors. The results showed that 6-OHDA-lesion mice implanted with Diazoxide (Diz, KATP channel opener) could alleviate LID but worsen with Glibenclamide (Gbc, KATP channel blocker). Also, the Gbc increases the expression of D3R and Kir6.2, but Diz decreases D3R and Kir6.2 in the striatum. Then we treated pheochromocytoma with stable transfection of human D3R (PC-12/hD3) with D3R agonist. The data showed a higher expression of SUR1 and Kir6.2 than control.
Bagga V, Dunnett SB, Fricker RA (2015) The 6-OHDA mouse model of Parkinson's disease - Terminal striatal lesions provide a superior measure of neuronal loss and replacement than median forebrain bundle lesions. Behavioural brain research 288:107-117.
Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacological reviews 63:182-217.
Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors - IUPHAR Review 13. British journal of pharmacology 172:1-23.
Bozzi Y, Borrelli E (2013) The role of dopamine signaling in epileptogenesis. Frontiers in cellular neuroscience 7:157.
Brigham EF, Johnston TH, Brown C, Holt JDS, Fox SH, Hill MP, Howson PA, Brotchie JM, Nguyen JT (2018) Pharmacokinetic/Pharmacodynamic Correlation Analysis of Amantadine for Levodopa-Induced Dyskinesia. The Journal of pharmacology and experimental therapeutics 367:373-381.
Calabresi P, Picconi B, Tozzi A, Ghiglieri V, Di Filippo M (2014) Direct and indirect pathways of basal ganglia: a critical reappraisal. Nature neuroscience 17:1022-1030.
Chandrasekhar Y, Phani Kumar G (2018) Gallic Acid Protects 6-OHDA Induced Neurotoxicity by Attenuating Oxidative Stress in Human Dopaminergic Cell Line. 43:1150-1160.
Chen PC, Lao CL, Chen JC (2009) The D(3) dopamine receptor inhibits dopamine release in PC-12/hD3 cells by autoreceptor signaling via PP-2B, CK1, and Cdk-5. Journal of neurochemistry 110:1180-1190.
Chen PC, Kryukova YN, Shyng SL (2013) Leptin regulates KATP channel trafficking in pancreatic beta-cells by a signaling mechanism involving AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA). The Journal of biological chemistry 288:34098-34109.
Chotibut T, Apple DM, Jefferis R, Salvatore MF (2012) Dopamine transporter loss in 6-OHDA Parkinson's model is unmet by parallel reduction in dopamine uptake. PloS one 7:e52322.
Di Giovanni G, Di Mascio M, Di Matteo V, Esposito E (1998) Effects of acute and repeated administration of amisulpride, a dopamine D2/D3 receptor antagonist, on the electrical activity of midbrain dopaminergic neurons. The Journal of pharmacology and experimental therapeutics 287:51-57.
Goto S (2017) Striatal Galphaolf/cAMP Signal-Dependent Mechanism to Generate Levodopa-Induced Dyskinesia in Parkinson's Disease. Frontiers in cellular neuroscience 11:364.
Kalia LV, Lang AE (2015) Parkinson's disease. Lancet (London, England) 386:896-912.
Mallet N, Delgado L, Chazalon M, Miguelez C, Baufreton J (2019) Cellular and Synaptic Dysfunctions in Parkinson's Disease: Stepping out of the Striatum. Cells 8.
Martin GM, Chen PC, Devaraneni P, Shyng SL (2013) Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels. Front Physiol 4:386.
Murer MG, Moratalla R (2011) Striatal Signaling in L-DOPA-Induced Dyskinesia: Common Mechanisms with Drug Abuse and Long Term Memory Involving D1 Dopamine Receptor Stimulation. Frontiers in neuroanatomy 5:51.
Olanow CW, Obeso JA, Stocchi F (2006) Drug insight: Continuous dopaminergic stimulation in the treatment of Parkinson's disease. Nature clinical practice Neurology 2:382-392.
Rodriguez-Sanchez M, Escartin-Perez RE (2019) Blockade of Intranigral and Systemic D3 Receptors Stimulates Motor Activity in the Rat Promoting a Reciprocal Interaction among Glutamate, Dopamine, and GABA. 9.
Roshan MH, Tambo A, Pace NP (2016) Potential Role of Caffeine in the Treatment of Parkinson's Disease. The open neurology journal 10:42-58.
Schiemann J, Schlaudraff F, Klose V, Bingmer M, Seino S, Magill PJ, Zaghloul KA, Schneider G, Liss B, Roeper J (2012) K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration. Nature neuroscience 15:1272-1280.
Sebastianutto I, Maslava N, Hopkins CR, Cenci MA (2016) Validation of an improved scale for rating l-DOPA-induced dyskinesia in the mouse and effects of specific dopamine receptor antagonists. Neurobiology of disease 96:156-170.
Shen KZ, Johnson SW (2012) Regulation of polysynaptic subthalamonigral transmission by D2, D3 and D4 dopamine receptors in rat brain slices. The Journal of physiology 590:2273-2284.
Solis O, Garcia-Montes JR, Gonzalez-Granillo A, Xu M, Moratalla R (2017) Dopamine D3 Receptor Modulates l-DOPA-Induced Dyskinesia by Targeting D1 Receptor-Mediated Striatal Signaling. Cerebral cortex (New York, NY : 1991) 27:435-446.
Sun J, Cairns NJ, Perlmutter JS, Mach RH, Xu J (2013) Regulation of dopamine D(3) receptor in the striatal regions and substantia nigra in diffuse Lewy body disease. Neuroscience 248:112-126.
Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson's disease. Journal of neurochemistry 139 Suppl 1:318-324.
Tinker A, Aziz Q, Li Y, Specterman M (2018) ATP-Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Comprehensive Physiology 8:1463-1511.
Wang S, Hu LF, Yang Y, Ding JH, Hu G (2005) Studies of ATP-sensitive potassium channels on 6-hydroxydopamine and haloperidol rat models of Parkinson's disease: implications for treating Parkinson's disease? Neuropharmacology 48:984-992.
Wu Y, Shyng SL, Chen PC (2015) Concerted Trafficking Regulation of Kv2.1 and KATP Channels by Leptin in Pancreatic beta-Cells. The Journal of biological chemistry 290:29676-29690.
Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, Zhang S, Huang Q, Shi M (2017) ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Molecular cancer 16:79.