| 研究生: |
俞泰華 Yu, Tai-Hua |
|---|---|
| 論文名稱: |
行人與機車騎士下肢碰撞模擬及傷害評估 Lower Limb Impact Simulation and Injury Assessment in Pedestrians and Scooter Riders |
| 指導教授: |
黃才烱
Huang, Tsai-Jiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 207 |
| 中文關鍵詞: | 行人傷害 、下肢次系統 、機車碰撞意外事故 、行人下肢保護裝置 、田口品質方法 |
| 外文關鍵詞: | Pedestrian injury, Lower limb sub-system, Scooter crash accident, Protective device, Taguchi method |
| 相關次數: | 點閱:105 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地區因地狹人稠,且人口大多集中於都會區,因此造就以具高機動性及節省成本的速克達機車(Scooter)作為主要交通工具之獨特交通文化,但也使得機車成為台灣地區肇事數量最多的車種。都會區道路行人密集度高,於道路上之活動空間常與機車重疊共用,造成行人與機車之意外事故頻繁,而行人與機車意外事故中,以機車輪胎與機車前方車體為最易與行人下肢碰觸,對行人下肢造成傷害之部位;此外,機車行駛於路面顛簸或濕滑的狀態下,容易發生自摔傾倒之情況,而傾倒過程可能會壓迫騎士下肢形成傷害。根據案例研究統計,於機車之交通意外事故中,以人體下肢為最容易受傷之部位,其常見之傷害型態為骨折、膝關節與足踝關節之肌腱或韌帶等軟組織損傷,雖致命率低,但復健所需時間冗長,且耗費大量醫療成本,因此對其嚴重性不可忽視。
汽車產業於人體傷害的研究發展行之有年,碰撞人偶無論在試驗方法、傷害評估與生物反應上皆已成熟,本研究以歐洲促進汽車安全委員會(European Enhanced Vehicle-Safety Committee; EEVC)所訂定出之次系統測試方法,採用汽車產業所使用之行人下肢衝擊器和碰撞人偶之下肢,將傷者與機車之意外事故分成各種不同撞擊情形,進行機車對行人下肢碰撞和機車自傾倒壓迫騎士下肢的模擬與傷害評估,藉此了解並討論各種機車意外事故對人體下肢的傷害風險。
受限於機車外型與結構,機車可安裝之保護裝置相較於汽車種類少,而且目前皆以保護機車騎士為主,另外因其成本因素,所以一般鮮少安裝在價錢較低廉之通勤用輕型機車上,而關於行人下肢受機車撞擊之傷害目前並無相關保護措施可提供防護。本研究根據所模擬出之傷害評估,設計可安裝於機車前方,專對行人下肢的保護裝置,並針對保護裝置之材料性質與吸能機構進行探討,使用田口品質方法進行控制因子水準之配置,分析各控制因子對行人下肢的影響,經由各模擬結果評估後,配置出最佳因子水準,得到最佳保護裝置系統組合。最後經過模擬與分析之結果,本研究之保護裝置可有效降低機車前撞對行人下肢所造成之傷害程度。
Taiwan is an island terrain with high population density. In addition, population is mostly concentrated in the city, causing the city with heavy traffic. For conveniences, the scooter became the main commuting vehicle for the people of Taiwan and this phenomenon is resulting in the unique culture of the traffic in Taiwan. But at the same time pedestrians and scooters accidents often occur on city roads in Taiwan. According to research statistics, lower limbs are the most commonly injured human body region in motorcycle or scooter accidents. Bone fractures, ligament and tendon strain in knee and ankle are among these injury mechanisms. These injuries are usually nonfatal, but it needs to take a lengthy recovery time and has to spend a lot of medical expenses. Therefore, the seriousness can’t be ignored.
In automobile industry, crash test dummies are commonly used as a tool to measure human injuries due to collision for years and mandated in many countries. Therefore, crash test dummies are reliable in replicating responses and assessing injuries for the human. In this study, an adapted dummy sub-system injury assessment method based on the regulation of EEVC (European Enhanced Vehicle-Safety Committee) is proposed to simulate and evaluate the injuries of pedestrians’ and scooter riders’ lower limb. Furthermore, the study is classified into a variety of crash environments in order to understand the human lower limb injury in various scooter accident situations.
Due to the shape and structure, the protection devices used in scooters are less than automobiles. Also, they are generally rarely installed because of the low cost of the scooter. To avoid the pedestrian lower limb injury from the motorcycle crash, there is no protective devices can be provided currently. In this study, a prototype device which can be used in front of the scooter to protect the pedestrian lower limb is proposed. Based on the Taguchi method, the parameter level configuration is adjusted and each control factor for pedestrian lower limb injuries is analyzed. Through the analysis of the simulation results, the optimal factor level is configured to obtain the best protective device combination. Finally, the protection device can effectively reduce pedestrian lower limb injuries according to the outcome resulting from the simulation.
Cossalter, V., “Motorcycle Dynamics,” ISBN 978-1-4303-0861-4, pp. 105-108, 2006.
Craig, G. R., Sleet, R., and Wood, S. K., “Lower Limb Injuries in Motorcycle Accidents,” Injury: the British Journal of Accident Surgery, Vol. 15, pp. 163-166, 1983.
Crandall, J. R., Petit, P., Portier, L., Hall, G. W., Bass, C. R., Klopp, G. S., Hurwitz, S., Pilkey, W. D., Trosseille, X., Tarrière, C., and Lassau, J-P., “Biomechanical Response and Physical Properties of the Leg, Foot, and Ankle,” Society of Automotive Engineers (SAE), No. 962424, 1996.
Deguchi, M., “Modeling of a Motorcycle for Collision Simulation,” 18th International Technical Conference on the Enhanced Safety of Vehicles(ESV) , Paper No. 157, 2003.
EEVC, “EEVC Ad-Hoc Group Report – A Review of Motorcycle Safety,” European Experimental Vehicles Committee, 1994.
EEVC, “EEVC Working Group 10 Report - Proposals for Methods to Evaluate Pedestrian Protection for Passenger Cars,” European Experimental Vehicles Committee, 1994.
EEVC, “EEVC Working Group 17 Report - Improve Test Methods to Evaluate Pedestrian Protection Afforded by Passenger Cars,” European Enhanced Vehicle-Safety Committee, 1998.
EEVC, “EEVC Working Group 12 Report – Report on THOR-Lx Design and Performance,” European Enhanced Vehicle-Safety Committee, 2009.
Elliott, M. A, Baughan, C. J., Broughton, J., Chinn, B., Grayson, G. B., Knowles, J., Smith, L. R., and Simpson, H., “Motorcycle Safety: A Scoping Study,” TRL Report TRL581, ISSN 0968-4107, 2003.
Fujii, S., “Motorcycle Tire Crash Analysis,” JSAE Review, Vol. 24, pp. 471-475, 2003.
Funk, J. R., Srinivasan, S. C. M., Crandall, J. R., Khaewpong N., Eppinger, R. H., Jaffredo, A. S., Potier, P., and Petit, P. Y., “The Effect of Axial Preload and Dorsiflexion on the Tolerance of the Ankle/Subtalar Joint to Dynamic Inversion and Eversion,” Stapp Car Crash Journal, Vol. 46, 2002.
GESAC, “Biomechanical Response Requirements of the THOR NHTSA Advanced Frontal Dummy,” General Engineering and Systems Analysis Company, Report No. GESAC-05-03, 2005.
Hanna, R., and Austin, R., “Lower-Extremity Injuries in Motorcycle Crashes,” Mathematical Analysis Division, National Center for Statistic and Analysis, National Highway Traffic Safety Administration (NHTSA), 2008.
Huberth, F., Hiermaier, S., and Neumann, M., “Material Models for Polymers under Crash Loads Existing LS-DYNA Models and Perspective,” LS-DYNA Anwenderforum, 2005.
Huang, M., “Vehicle Crash Mechanics,” Florida: CRC Press LLC, 2002.
Huang, T-J., Wu, J-T., Hsiao, C-Y., Wang, M-S., and Lee, K-C., “Design of a Bumper System for Pedestrian Lower Leg Protection Using the Taguchi Method,” Journal of Automobile Engineering, Vol. 225, Part D, Article No. 410125, 2011.
International Standard ISO 13232: 1996(E). “Motorcycles – Test and Analysis Procedures for Research Evaluation of Rider Crash Protective Devices Fitted to Motorcycles, Part 1 to 8,” International Organization for Standardization (ISO), Geneva, 1996.
Kajzer, j., “Impact Biomechanics of Knee Injuries,” Doctoral Thesis, Department of Injury Prevention, Chalmers University of Technology, Göteborg, Sweden, 1991.
Kramer, M., Burow, K., and Heger, A., “Fracture Mechanism of Lower Legs Under Impact Load,” Society of Automobile Engineers (SAE), Paper No. 730966, 1973.
Kuppa, S., Haffner, M., Eppinger, R., and Saunders, J., “Lower Extremity Response and Trauma Assessment Using the THOR-LX/HIIIr and the Denton Leg in Frontal Offset Vehicle Crashes,” 17th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 456, 2001a.
Kuppa, S., Wang, J., Haffner, M., and Eppinger, R., “Lower Extremity Injuries and Associated Injury Criteria,” 17th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 457, 2001b.
Manoli, A. 2nd., Prasad, P., and Levine, R. S., “Foot and Ankle Severity Scale (FASS),” Foot & Ankle International, 1997.
Mizuno, Y., and Ishikawa, H., “Summary of IHRA Pedestrian Safety WG Activities – Proposed Test Method to Evaluate Pedestrian Protection Aforded by Passenger Cars,” 18th International Technical Conference on the Enhanced Safety of Vehicles(ESV), Paper No. 280, 2003.
NHTSA, and VNTSC, “LS-DYNA Model of THOR 50th Percentile Male Dummy User’s Manual,” National Highway Traffic Safety Administration (NHTSA), Volpe National Transportation System Center (VNTSC), 2003.
NHTSA, “Certification Procedure for the THOR-Lx/Hybrid III Retrofit Version 3.2,” National Highway Traffic Safety Administration Vehicle Research and Test Center, 2004.
Nyquist, G. W., “Injury Tolerance Characteristics of the Adult Human Lower Extremities Under Static and Dynamic Loading,” Society of Automotive Engineers (SAE), Paper No. 861925, 1986.
Otte, D., Willeke, H., Chinn, B., Doyle, D., and Shuller, E., “Impact Mechanisms of Helmet Protected Heads in Motorcycle Accidents-Accidental Study of COST 327,” 1998 International Motorcycle Conference, 1998.
Otte, D., and Pohlemann, T., “Analysis and Load Assessment of Secondary Impact to Adult Pedestrians After Car Collisions on Road,” 17th International Conference on the Enhanced Safety of Vehicles (ESV), 2001.
Parenteau, C., Viano, D., Petit, P., “Biomechanical Properties of Human Cadaveric Ankle-Subtalar Joints in Quasi-static Loading,” Jornal of Biomechanical Engineering, Vol. 120, pp. 105-111, 1998.
Petit, P. Portier, L., Foret-Bruno, J-Y. Trosseille, X., Parenteau, C., Coltat, J-C., Tarrière, C., and Lassau, J-P., “Quasi- Static Characterization of the Human Foot-Ankle Joints in Simulated Tensed State and Updated Accidentological Data,” International IRCOBI Conference on the Biomechanics of Impact, 1996.
Ross, D. J., “The Prevention of Leg Injury in Motorcycle Accidents,” Injury: the British Journal of Accident Surgery, Vol. 15, pp.75-77, 1983.
Simms, C. K., “Developments in Pedestrian Crash Safety: A Triumph of Design in Bioengineering,” Perspectives on Design and Bioengineering: Essays in Honour of C.G. Lyons, pp. 39-55, 2008.
Sporner, A., Langwieder, K., and Polauke, J., “Risk of Leg Injuries to Motorcyclists, Present Situation and Countermeasures,” 12th International Technical Conference on the Enhanced Safety of Vehicles (ESV) Conference, Goteborg, Sweden, 1989.
Sporner, A., Langwieder, K., and Polauke, J., “Passive Safety for Motorcyclist – from the Legprotector to the Airbag,” Society of Automotive Engineers (SAE), Paper No. 900756, 1990.
Yang, J., “Review of injury Biomechanical in Car-Pedestrian Collision,” Chalmers University of Technology, 2002.
內政部警政署統計室,96年道路交通事故分析,http://www.npa.gov.tw/NPAGip/wSite/ct?xItem=44217&ctNode=12598&mp=1,2008。
行政院衛生署,99年死因統計結果分析,http://www.doh.gov.tw/CHT2006/DM/DM2_2.aspx?now_fod_list_no=11962&class_no=440&level_no=4,2011。
交通部統計處,中華民國交通統計月報,交通部,台北,台灣,2012。
吳淑華,騎過半世紀:機車特展,國立科學工藝博物館,台灣,2008。
李輝煌,田口方法:品質設計的原理與實務,高立圖書有限公司,新北市,台灣,2009。
林志儒,機車事故之電腦模擬,國立台灣科技大學機械工程研究所碩士論文,2005。
洪銚亨,機車用兒童安全座椅之設計與分析,國立成功大學機械工程研究所碩士論文,2006。
曾文龍,多體動力人偶應用於腳踏車碰撞之探討,國立成功大學醫學工程研究所碩士論文,2003。
張琪華,低速規範下汽車保險桿厚度設計流程,國立成功大學機械工程研究所碩士論文,2010。
彭阿全,機車操縱性之研究,國立交通大學機械工程研究所碩士論文,1990。
彭鐿良,有限元素法於機車結構之模態分析與應用,國立成功大學機械工程研究所碩士論文,1993。
鄭歷菁等人編譯,醫用解剖學,合計圖書出版社,台北,台灣,2008。
賴明德等人編譯,新編人體解剖學,華格那企業有限公司,台灣,2010。
蕭靖宜,行人下肢保護吸能性汽車保險桿分析與設計,國立成功大學機械工程研究所碩士論文,2010。