簡易檢索 / 詳目顯示

研究生: 林宗翰
Lin, Zhong-Han
論文名稱: 應用晶格波茲曼法於冪律流體在攪拌混合器之對流混合特性分析
Analysis of Convective Mixing Characteristics for Power-Law Fluid in the Impeller Stirred Tank by the Lattice Boltzmann Method
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 83
中文關鍵詞: 晶格波茲曼法濃度場攪拌槽對流擴散效應冪律流體
外文關鍵詞: Lattice Boltzmann method, Power-Law fluid, stirred tank, Convection diffusion, Concentration
相關次數: 點閱:84下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用晶格波茲曼法中之 且不可壓縮之晶格模型,並以雙分佈函數模擬非牛頓流體於一具雙入口單出口攪拌槽之流場及濃度場,藉由改變入口夾角、葉片幾何以及攪拌器運動模式,分析其混合效益之優劣。
    研究結果顯示,於葉片為轉動運動模式下,隨著葉片及入口特徵速度值提升,冪律流體之混合效果會首先隨著葉片轉速提升而增加,當達到某程度的轉速時,會因為黏度變小的影響使流體的混合效果下降(偽塑性流體)。此轉折點會隨著偽塑性流體的n值越小在越低的葉片轉速發生,即存在混和效率之極限。在擺動運動模式,固定入口及葉片特徵速度比值的情況下,混和效率則會受到震幅大小及初始擺放角度而產生差異。
    由於此運動模式下流場於擺動折返點會產生流體速度停滯的現象,因此黏度的變化並無法如轉動情況下完全發展,使相異n值之偽塑性流體在混和效果表現上十分相近。而葉片轉折點的幾何也直接的影響了最終混合效果的優劣。總結來說,轉動運動模式下的混合效益優於擺動運動模式。

    In this thesis, the model of the Lattice Boltzmann method has been used to analyze the power-law fluid mixing behavior in the open stirred tank within an impeller. There are three impeller motions, i.e., constant angular speed rotation, horizontal oscillation and vertical oscillation.
    The results showed that the mixing efficiency under rotation will increase at first and then decrease when the characteristic speed ratio raises. The reason for the deterioration of the mixing efficiency is due to the decrease in viscosity (Pseudo-plastic fluid).Under oscillation motion, the mixing efficiency is affected by the amplitude and initial position of the impeller.
    The mixing efficiency of oscillating motion between different power-law fluid n=0.7 and n=0.5 are similar, presumably because of viscosity does not develop fully under oscillating motion. Also the turning position of impeller has a big effect on mixing efficiency. Overall, the mixing efficiency of rotation motion is better than the other.

    摘要i Extended Abstractii 誌謝xii 目錄xiii 圖目錄xv 符號表xviii 第1章 緒論1 1.1 研究背景與動機1 1.2 晶格波茲曼法2 1.3 非牛頓流體5 1.4 本文架構6 第2章 晶格波茲曼方法的基本理論與模型7 2.1 晶格波茲曼法理論7 2.2 D_2 Q_9模型與巨觀方程式9 2.3 濃度方程式24 2.4 冪律流體模型25 第3章 邊界處理與程式驗證27 3.1 晶格波茲曼法的邊界條件27 3.1.1 格點判別法28 3.1.2 標準反彈邊界30 3.1.3 速度及壓力邊界31 3.1.4 曲面邊界33 3.1.5 濃度場反彈邊界36 3.2 晶格波茲曼法程式流程及驗證37 3.2.1 程式流程37 3.2.2 程式驗證39 第4章 結果與討論43 4.1 模型之幾何與相關參數設定43 4.1.1 模型幾何及邊界條件43 4.1.2 攪拌混合器之運動控制方程式47 4.2 獨立性分析48 4.3 攪拌混合器之雙入口夾角探討50 4.4 相同水力直徑下之葉片比例探討53 4.5 相同入口雷諾數下之相異振幅探討56 4.6 相同入口雷諾數下之相異轉速探討75 第5章 結論與未來展望79 5.1 結論79 5.2 未來展望80 參考文獻 81

    Aharonov, E., and Rothman, D. H. (1993). Non‐Newtonian flow (through porous media): A lattice‐Boltzmann method. Geophysical Research Letters, 20(8), 679-682.
    An, S. J., Kim, Y. D., Heu, S., and Maeng, J. S. (2006). Numerical study of the mixing characteristics for rotating and oscillating stirrers in a microchannel. Journal of the Korean Physical Society, 49(2), 651-659.
    Bhatnagar, P. L., Gross, E. P., and Krook, M. (1954). A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical review, 94(3), 511.
    Bouzidi, M. h., Firdaouss, M., and Lallemand, P. (2001). Momentum transfer of a Boltzmann-lattice fluid with boundaries. Physics of Fluids, 13(11), 3452-3459.
    Chen, C. L., Chang, S. C., and Chen, C. Y. (2017). Lattice Boltzmann simulation of convective heat transfer of non-Newtonian fluids in impeller stirred tank. Applied Mathematical Modelling, 46, 519-535.
    Chang, S. C., Chen, C. L., and Cheng, S. C. (2015). Analysis of convective heat transfer improved impeller stirred tanks by the lattice Boltzmann method. International Journal of Heat and Mass Transfer, 87, 568-575.
    Chang, S.-C., Hsu, Y.-S., and Chen, C.-L. (2011). Lattice Boltzmann simulation of fluid flows with fractal geometry: An unknown-index algorithm. J. Chin. Soc. Mech. Eng, 32(6), 523-531.
    Chen, S., Martinez, D., and Mei, R. (1996). On boundary conditions in lattice Boltzmann methods. Physics of Fluids, 8(9), 2527-2536.
    Chen, Y.-L., Cao, X.-D., and Zhu, K.-Q. (2009). A gray lattice Boltzmann model for power-law fluid and its application in the study of slip velocity at porous interface. Journal of Non-Newtonian Fluid Mechanics, 159(1), 130-136.
    He, X., and Luo, L.-S. (1997). Lattice Boltzmann model for the incompressible Navier–Stokes equation. Journal of Statistical Physics, 88(3), 927-944.
    Higuera, F., and Jimenez, J. (1989). Boltzmann approach to lattice gas simulations. EPL (Europhysics Letters), 9(7), 663.
    Higuera, F., Succi, S., and Benzi, R. (1989). Lattice gas dynamics with enhanced collisions. EPL (Europhysics Letters), 9(4), 345.
    Inamuro, T., Yoshino, M., and Ogino, F. (1995). A non‐slip boundary condition for lattice Boltzmann simulations. Physics of Fluids, 7(12), 2928-2930.
    Kishore, N., Chhabra, R. P., and Eswaran, V. (2007). Mass transfer from a single fluid sphere to power-law liquids at moderate Reynolds numbers. Chemical Engineering Science, 62(21), 6040-6053.
    Kim, Y.-D., An, S.-J., and Maeng, J.-S. (2007). Numerical analysis of the fluid mixing behaviors in a microchannel with a circular cylinder and an oscillating stirrer. Journal of the Korean Physical Society, 50(2), 505-513.
    Lallemand, P., and Luo, L.-S. (2003). Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions. Physical review E, 68(3), 036706.
    McNamara, G. R., and Zanetti, G. (1988). Use of the Boltzmann equation to simulate lattice-gas automata. Physical review letters, 61(20), 2332.
    Noble, D. R., Georgiadis, J. G., and Buckius, R. O. (1995). Direct assessment of lattice Boltzmann hydrodynamics and boundary conditions for recirculating flows. Journal of Statistical Physics, 81(1), 17-33.
    Qian, Y., d'Humières, D., and Lallemand, P. (1992). Lattice BGK models for Navier-Stokes equation. EPL (Europhysics Letters), 17(6), 479.
    Shih, Y. C., Khodadadi, J. M., Weng, K. H., and Ahmed, A. (2009). Periodic fluid flow and heat transfer in a square cavity due to an insulated or isothermal rotating cylinder. Journal of Heat Transfer, 131(11), 111701.
    Shan, X. (1997). Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method. Physical review E, 55(3), 2780.
    Wolf-Gladrow, D. A. (2004). Lattice-gas cellular automata and lattice Boltzmann models: an introduction: Springer.
    Ziegler, D. P. (1993). Boundary conditions for lattice Boltzmann simulations. Journal of Statistical Physics, 71(5), 1171-1177.
    Zou, Q., and He, X. (1997). On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of Fluids, 9(6), 1591-1598.
    Chang S-C, Lectures for the Lattice Boltzmann Method, Department of Mechanical Engineering, NCKU, Taiwan, 2016.

    下載圖示 校內:2019-08-31公開
    校外:2019-08-31公開
    QR CODE