| 研究生: |
張豐桂 Chang, Feng-Kuei |
|---|---|
| 論文名稱: |
添釩氧化鉬薄膜作為有機太陽能電池之電洞傳輸層研究 Vanadium-Doped Molybdenum Oxide Thin Film as Hole Transport Layer in Organic Photovoltaics |
| 指導教授: |
陳貞夙
Chen, Jen-Sue |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 添釩氧化鉬 、有機太陽能電池 、功函數 、載子傳輸 |
| 外文關鍵詞: | V-doped molybdenum oxide, organic photovoltaic, work function, carrier transportation |
| 相關次數: | 點閱:84 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在傳統式結構有機太陽能電池中,一般使用PEDOT:PSS作為電洞傳輸層。近年來,三氧化鉬具有良好的傳輸載子能力,且較PEDOT:PSS穩定,可有效提升元件壽命,成為另一受重視的電洞傳輸層材料。然而對於三氧化鉬傳導電洞的機制,學界至今還沒有一全面且清楚的論調,更特別的是薄膜形式的三氧化鉬會因為含有氧空缺而呈現一n type半導體性質,這與我們一般認為陽極緩衝層需使用p type材料之觀念相異,也因此激起學界研究此材料之興趣。以目前已發表的研究來看,提升氧化鉬材料作為電洞傳輸層時的元件表現之重點,在於縮小氧化鉬層之價帶邊緣與主動層施體材料之HOMO間的能階差值。根據文獻上顯示之能帶圖,五氧化二釩能階位置略高於三氧化鉬,因此我們假設在氧化鉬中添入釩可能有助於縮小此能階差值。
吾人利用在前驅液添入釩化合物的方法,製備出氧化鉬(釩)薄膜,鉬釩莫耳比為1:0, 1:0.05, 1:0.2, 1:0.5, 0:1,並應用在有機太陽能電池中作為電洞傳輸層,元件結構為ITO/ Mo(V)Ox/ P3HT:PCBM/ ZnO NP/ Al,工作面積0.16cm2。實驗結果顯示5%添釩氧化鉬薄膜有最好之元件表現,光電轉換效率2.16%,開路電壓0.6V,短路電流密度6.93mA/cm2,填充因子51.9%。在使用更高釩比例之添釩氧化鉬薄膜時,其元件轉換效率較差,但仍高於純氧化鉬之元件表現。在穩定性方面,比起使用PEDOT:PSS的元件,添釩氧化鉬元件則表現出一近似或略佳之穩定性。
在材料分析方面,利用掃描式電子顯微鏡及原子力顯微鏡我們可以觀察各式添釩氧化鉬薄膜之表面形貌,結果顯示氧化鉬(釩)薄膜並沒有明顯改變ITO基板表面形貌。另一方面5%添釩氧化鉬薄膜比起純氧化鉬薄膜而言,具有較低之表面粗糙度。由X光光電子能譜可觀察到純氧化鉬薄膜含有6+及少量5+價數之鉬離子存在,然在添入釩元素後幾乎全為6+價數之鉬離子。另外在釩訊號區域我們發現釩主要以5+價數存在,且隨著添入量增加,其訊號強度有上升趨勢,顯示釩元素確有進入薄膜中。在電阻率實驗中方面,所有氧化鉬(釩)薄膜電阻率都在10-3-10-1ohm-cm之間,添入5%釩氧化鉬薄膜有最低之電阻率,然添入20%及50%釩則使電阻率反升至比純氧化鉬薄膜更高之電阻值。5%添釩氧化鉬薄膜因導電率較高以及表面粗糙度較低,使得載子傳輸較為容易,此也反映在較低之Rs值上。由X光繞射實驗我們發現純氧化鉬薄膜顯現出微弱之三氧化鉬結晶相,且結晶性隨著釩添入量增加而有下降趨勢,此導致添入20%及50%釩之氧化鉬薄膜電阻率上升。
由紫外光光電子能譜吾人可計算各式氧化鉬(釩)薄膜價帶邊緣能階值以及費米能階值,輔以由可見光-紫外光吸收光譜計算之各式氧化鉬(釩)薄膜之光學能隙,我們可繪出元件能帶圖。結果顯示5%添釩氧化鉬價帶邊緣能階與P3HT之HOMO能階,具有最小的能階,此較小之差值有助於電洞由P3HT之HOMO位置傳至添釩氧化鉬層,再傳至陽極輸出電流,使得元件有較佳表現。
In the field of conventional organic photovoltaics (OPV), PEDOT:PSS is generally used as hole transport layer (HTL). Recently, MoO3 has recognized as an important HTL because of its good ability of carrier transportation and better stability comparing to PEDOT:PSS. However, the mechanism of hole transportation in MoO3 is still under debate. Furthermore, thin-film MoO3 shows n type characteristic owing to the existence of oxygen vacancies, which conflicts with the general concept that p type material is suitable for hole transportation. According to the literature, the key point of enhancing the device performance using molybdenum oxide as HTL locates on the decreasing of band offset between HOMO of the donor material and valence band edge of oxide. Published energy diagrams show higher energy level of V2O5 than that of MoO3, therefore, we assume that adding V into MoO3 may decrease the band offset.
We fabricate vanadium-doped molybdenum oxide film (V-doped MoOx film) by adding vanadium compound into the precursor solution. The mole ratio of Mo:V are 1:0, 1:0.05, 1:0.2, 1:0.5, 0:1, and these films are used as HTL in OPV. The device structure is ITO/ Mo(V)Ox/ P3HT:PCBM/ ZnO NP/ Al, and the working area is 0.16 cm2. The result shows that MoV0.05Ox device has the best performance, including power conversion efficiency 2.16%, Voc 0.6V, Jsc 6.93 mA/cm2, and FF 51.9%. The devices with higher V contents show weaker performance, but still better than that of pure MoOx device. In stability test, when comparing with PEDOT:PSS device, Mo(V)Ox devices show similar or slightly better performance.
In material analysis, scanning electron microscopy (SEM) and atomic force microscopy (AFM) are employed to examine the surface morphology of the Mo(V)Ox films. The images show that the Mo(V)Ox films barely change the morphology of ITO substrates. On the other hand, MoV0.05Ox film shows a smaller roughness comparing to pure MoOx film. X-ray photoelectron spectroscopy (XPS) reveals that there are Mo6+ and a minor amount of Mo5+ oxidation states in pure MoOx film. However, after adding V, almost only Mo6+ is observed in the Mo(V)Ox films. For V 2p spectra, the spectra show mainly V5+ oxidation state. As the V ratio increases, the intensity of V signal increases as well. As for electrical resistivity test, all Mo(V)Ox films exhibit the resistivity in the range of 10-3-10-1 Ω-cm and MoV0.05Ox shows the lowest resistivity among all, which is beneficial for hole transporting. On the other hand, the resistivity values of MoV0.2Ox and MoV0.5Ox are higher than that of pure MoOx film. Because the MoV0.05Ox film has highest conductivity and a lower roughness, carrier transportation is easier, which corresponds to a lowest Rs value of the device with MoV0.05Ox HTL. X-ray diffraction reveals that pure MoOx film shows weak diffraction peaks of MoO3 phase, and the peak intensity decreases as V ratio increases. The decrease of crystallinity causes the increase of resistivity in MoV0.2Ox and MoV0.5Ox films.
Using ultraviolet photoelectron spectroscopy (UPS), we can define the energy levels of valence band edge and Fermi level of Mo(V)Ox films. With the assistance of optical energy gaps calculated from UV-visible transmission spectroscopy, we can plot the energy band diagrams of devices. The result shows that device using MoV0.05Ox HTL has the smallest band offset between valence band edge of oxide and HOMO of P3HT, which is helpful for hole transporting from HOMO of P3HT to anode via MoV0.05Ox HTL, which leads to a better efficiency of hole extraction.
[1] Luque A. HS.(2003) Handbook of photovoltaic science and engineering. Hoboken: Wiley.
[2] Green MA. (2002) "Third generation photovoltaics: solar cells for 2020 and beyond." Physica E: Low-dimensional Systems and Nanostructures.14(1-2)pp:65-70.
[3] Jackson P, Hariskos D, Wuerz R, Wischmann W, Powalla M. (2014) "Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%." physica status solidi (RRL) – Rapid Research Letters.8(3)pp:219-222.
[4] Xin X, He M, Han W, Jung J, Lin Z. (2011) "Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells." Angewandte Chemie.50(49)pp:11739-11742.
[5] Lee Y-L, Lo Y-S. (2009) "Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe." Advanced Functional Materials.19(4)pp:604-609.
[6] Gang Li RZaYY. (2012) "Polymer solar cells." Nature Photonics.6pp:153-161.
[7] Green MA. (2001) "Third generation photovoltaics: Ultra-high conversion efficiency at low cost." Progress in Photovoltaics: Research and Applications.9(2)pp:123-135.
[8] (NREL) NREL. Best Research-cell Efficiencies. http://www.nrel.gov/ncpv/: NREL; 2014.
[9] Dasgupta B, Goh WP, Ooi ZE, Wong LM, Jiang CY, Ren Y, et al. (2013) "Enhanced Extraction Rates through Gap States of Molybdenum Oxide Anode Buffer." The Journal of Physical Chemistry C.117(18)pp:9206-9211.
[10] Li X, Choy WCH, Xie F, Zhang S, Hou J. (2013) "Room-temperature solution-processed molybdenum oxide as a hole transport layer with Ag nanoparticles for highly efficient inverted organic solar cells." Journal of Materials Chemistry A.1(22)pp:6614.
[11] Guter W, Schöne J, Philipps SP, Steiner M, Siefer G, Wekkeli A, et al. (2009) "Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight." Applied Physics Letters.94(22)pp:223504.
[12] Gadisa A, Hairfield T, Alibabaei L, Donley CL, Samulski ET, Lopez R. (2013) "Solution processed Al-doped ZnO nanoparticles/TiOx composite for highly efficient inverted organic solar cells." ACS applied materials & interfaces.5(17)pp:8440-8445.
[13] Dong WJ, Jung GH, Lee J-L. (2013) "Solution-processed-MoO3 hole extraction layer on oxygen plasma-treated indium tin oxide in organic photovoltaics." Solar Energy Materials and Solar Cells.116pp:94-101.
[14] Pei Z, Parvathy Devi B, Thiyagu S. (2014) "Study on the Al–P3HT:PCBM interfaces in electrical stressed polymer solar cell by X-ray photoelectron spectroscopy." Solar Energy Materials and Solar Cells.123(0)pp:1-6.
[15] Kim YH, Sachse C, Machala ML, May C, Müller-Meskamp L, Leo K. (2011) "Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells." Advanced Functional Materials.21(6)pp:1076-1081.
[16] Wong KH, Ananthanarayanan K, Luther J, Balaya P. (2012) "Origin of Hole Selectivity and the Role of Defects in Low-Temperature Solution-Processed Molybdenum Oxide Interfacial Layer for Organic Solar Cells." The Journal of Physical Chemistry C.116(31)pp:16346-16351.
[17] Hancox I, Rochford LA, Clare D, Walker M, Mudd JJ, Sullivan P, et al. (2013) "Optimization of a High Work Function Solution Processed Vanadium Oxide Hole-Extracting Layer for Small Molecule and Polymer Organic Photovoltaic Cells." The Journal of Physical Chemistry C.117(1)pp:49-57.
[18] Shrotriya V, Li G, Yao Y, Chu C-W, Yang Y. (2006) "Transition metal oxides as the buffer layer for polymer photovoltaic cells." Applied Physics Letters.88(7)pp:073508.
[19] Zeman M.(2011) Introduction to
Photovoltic Solar Energy. Netherlands: Delft University of Technology
[20] MAL MArceAu MGV. (2008) "solar reflectance values for concrete." concrete international 30(08)pp:52-58.
[21] Nunzi J-M. (2002) "Organic photovoltaic materials and devices." Comptes Rendus Physique.3(4)pp:523-542.
[22] http://www.newport.com/Introduction-to-Solar-Radiation/411919/1033/content.aspx. The path length in units of Air Mass, changes with the zenith angle.: Newport.
[23] Tak Y, Kim H, Lee D, Yong K. (2008) "Type-II CdS nanoparticle-ZnO nanowire heterostructure arrays fabricated by a solution process: enhanced photocatalytic activity." Chemical communications(38)pp:4585-4587.
[24] Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, et al. (2007) "Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing." Science.317(5835)pp:222-225.
[25] Neamen DA. Semiconductor Physics And Devices: Basic Principles. (forth ed). New York: McGraw-Hill.
[26] Morales-Acevedo A.(2013) Solar Cells - Research and Application Perspectives. Croatia: InTech.
[27] http://www.electronics-tutorials.ws/diode/diode_2.html. Pn-junction-equilibrium. Basic Electronics Tutorials.
[28] Yoo S, Domercq B, Kippelen B. (2005) "Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C60." Journal of Applied Physics.97(10)pp:103706.
[29] Moliton A, Nunzi J-M. (2006) "How to model the behaviour of organic photovoltaic cells." Polymer International.55(6)pp:583-600.
[30] Pulfrey DL.(1978) Photovoltaic power generation: Van Nostrand Reinhold Co.,.
[31] S. Glenis GT, F. Garnier. (1986) "Influence of the doping on the photovoltaic properties of thin films of poly-3-methylthiophene." Thin Solid Films.139(3)pp:221-231.
[32] Tang CW. (1986) "Two‐layer organic photovoltaic cell." Applied Physics Letters.48(2)pp:183-185.
[33] Nelson J. (2002) "O rganic photovoltaic films." Current Opinion in Solid State and Materials Science.6pp:87-95.
[34] Wöhrle D, Meissner D. (1991) "Organic Solar Cells." Adv Mater.3(3)pp:129-138.
[35] Dennler G, Lungenschmied C, Neugebauer H, Sariciftci NS, Labouret A. (2005) "Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells: Basics, encapsulation, and integration." Journal of Materials Research.20(12)pp:3224-3233.
[36] Durrant TMCaJR. (2010) "Charge Photogeneration in Organic Solar Cells." Chemical Reviews.110(11)pp:6736-6767.
[37] Shaw PE, Ruseckas A, Samuel IDW. (2008) "Exciton Diffusion Measurements in Poly(3-hexylthiophene)." Adv Mater.20(18)pp:3516-3520.
[38] Serap Guenes HN, and Niyazi Serdar Sariciftci. "Conjugated Polymer-Based Organic Solar Cells." Chemical Reviews.107(4)pp:1324-1338.
[39] Yen-Ju Cheng S-HY, and Chain-Shu Hsu. (2009) "Synthesis of Conjugated Polymers for Organic Solar Cell Applications." Chemical Reviews.109(11)pp:5868-5923.
[40] Gang Li RZ, Yang Yang. (2012) "Polymer solar cells." Nature Photonics.6pp:135-161.
[41] Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, et al. (2009) "Bulk heterojunction solar cells with internal quantum efficiency approaching 100%." Nature Photonics.3(5)pp:297-302.
[42] Moses D. (2014) "Organic photovoltaics: Efficient relaxation." Nature materials.13(1)pp:4-5.
[43] V. D. Mihailetchi PWMB, J. C. Hummelen, and M. T. Rispens. (2003) "Cathode dependence of the open-circuit voltage of polymer:fullerene
bulk heterojunction solar cells." JOURNAL OF APPLIED PHYSICS.94(10)pp:6849-6854.
[44] Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, et al. (2006) "Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency." Adv Mater.18(6)pp:789-794.
[45] Yang B, Yuan Y, Sharma P, Poddar S, Korlacki R, Ducharme S, et al. (2012) "Tuning the energy level offset between donor and acceptor with ferroelectric dipole layers for increased efficiency in bilayer organic photovoltaic cells." Adv Mater.24(11)pp:1455-1460.
[46] Credgington D, Hamilton R, Atienzar P, Nelson J, Durrant JR. (2011) "Non-Geminate Recombination as the Primary Determinant of Open-Circuit Voltage in Polythiophene:Fullerene Blend Solar Cells: an Analysis of the Influence of Device Processing Conditions." Advanced Functional Materials.21(14)pp:2744-2753.
[47] Kippelen B, Brédas J-L. (2009) "Organic photovoltaics." Energy & Environmental Science.2(3)pp:251.
[48] Yan CB, Chen XL, Wang F, Sun J, Zhang DK, Wei CC, et al. (2012) "Textured surface ZnO:B/(hydrogenated gallium-doped ZnO) and (hydrogenated gallium-doped ZnO)/ZnO:B transparent conductive oxide layers for Si-based thin film solar cells." Thin Solid Films.521pp:249-252.
[49] Kim Y, Choulis SA, Nelson J, Bradley DDC, Cook S, Durrant JR. (2005) "Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene." Applied Physics Letters.86(6)pp:063502.
[50] Green. MA.(1981) Solar Cells: Operating Principles, Technology, and System Applications. New Jersey: Prentice Hall.
[51] Gupta D, Bag M, Narayan KS. (2008) "Correlating reduced fill factor in polymer solar cells to contact effects." Applied Physics Letters.92(9)pp:093301.
[52] http://quizlet.com/18931992/ree-554-ch-5-cells-modules-arrays-flash-cards/. Draw and describe current-voltage (I-V) curves of a PV cell.: Quizlet LLC.
[53] Sirringhaus H. (1998) "Integrated Optoelectronic Devices Based on Conjugated Polymers." Science.280(5370)pp:1741-1744.
[54] Hummelen JCK, Brian W.; Lepeq, F.; Wudl, Fred; Yao, Jie; Wilkins, Charles L. (1995) "Preparation and Characterization of Fulleroid and Methanofullerene Derivatives." The Journal of Organic Chemistry.60(3)pp:532-538.
[55] Cheng F, Fang G, Fan X, Huang H, Zheng Q, Qin P, et al. (2013) "Enhancing the performance of P3HT:ICBA based polymer solar cells using LiF as electron collecting buffer layer and UV–ozone treated MoO3 as hole collecting buffer layer." Solar Energy Materials and Solar Cells.110pp:63-68.
[56] Kim J, Kim H, Kim G, Back H, Lee K. (2014) "Soluble transition metal oxide/polymeric acid composites for efficient hole-transport layers in polymer solar cells." ACS applied materials & interfaces.6(2)pp:951-957.
[57] Bruice PY.(2011) Organic Chemistry. (forth ed). New Jersey: Prentice Hall.
[58] Liu F, Shao S, Guo X, Zhao Y, Xie Z. (2010) "Efficient polymer photovoltaic cells using solution-processed MoO3 as anode buffer layer." Solar Energy Materials and Solar Cells.94(5)pp:842-845.
[59] Tao C, Ruan S, Xie G, Kong X, Shen L, Meng F, et al. (2009) "Role of tungsten oxide in inverted polymer solar cells." Applied Physics Letters.94(4)pp:043311.
[60] Kyaw AKK, Sun XW, Jiang CY, Lo GQ, Zhao DW, Kwong DL. (2008) "An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer." Applied Physics Letters.93(22)pp:221107.
[61] Tan Za, Qian D, Zhang W, Li L, Ding Y, Xu Q, et al. (2013) "Efficient and stable polymer solar cells with solution-processed molybdenum oxide interfacial layer." Journal of Materials Chemistry A.1(3)pp:657-664.
[62] Qin P, Fang G, Cheng F, Ke W, Lei H, Wang H, et al. (2014) "Sulfur-doped molybdenum oxide anode interface layer for organic solar cell application." ACS applied materials & interfaces.6(4)pp:2963-2973.
[63] Huang J-S, Chou C-Y, Liu M-Y, Tsai K-H, Lin W-H, Lin C-F. (2009) "Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods." Organic Electronics.10(6)pp:1060-1065.
[64] Kim JY, Kim SH, Lee HH, Lee K, Ma W, Gong X, et al. (2006) "New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer." Adv Mater.18(5)pp:572-576.
[65] Mark T. Greiner MGH, Wing-Man Tang, Zhi-BinWang, Jacky Qiu and Zheng-Hong Lu. (2011) "Universal energy-level alignment of molecules on
metal oxides." Nature materials.11pp:76-81.
[66] Shih MC, Huang BC, Lin CC, Li SS, Chen HA, Chiu YP, et al. (2013) "Atomic-scale interfacial band mapping across vertically phased-separated polymer/fullerene hybrid solar cells." Nano letters.13(6)pp:2387-2392.
[67] Findlay GAaT.(1999) SI Chemical Data. (fourth ed). Hoboken: Wiley.
[68] Wells AF.(1984) Structural Inorganic Chemistry. (fifth ed). oxford: Oxford University Press.
[69] Meyer J. (2011) "Electronic structure of molybdenum-oxide films and associated charge injection mechanisms in organic devices." Journal of Photonics for Energy.1(1)pp:011109.
[70] Koike K, Wada R, Yagi S, Harada Y, Sasa S, Yano M. (2014) "Characteristics of MoO3films grown by molecular beam epitaxy." Japanese Journal of Applied Physics.53(5S1)pp:05FJ02.
[71] Edward H. Kottcamp J.(1992) Alloy Phase Diagrams. Ohio: ASM International.
[72] Yip H-L, Hau SK, Baek NS, Ma H, Jen AKY. (2008) "Polymer Solar Cells That Use Self-Assembled-Monolayer- Modified ZnO/Metals as Cathodes." Adv Mater.20(12)pp:2376-2382.
[73] http://www.hitachi-hitec.com/global/science/uv_vis/u2900.html. Hitachi High Tech.
[74] Moulder JF.(1992) Handbook of X-ray Photoelectron Spectroscopy. USA: Perkin-Elmer Corp.
[75] Nalbach M.(2012) Ausarbeitung zum Seminar Vortrag im Rahmen des Anorganischen Fortgeschrittenenpraktikum. Germany: Johannes Gutenberg University Mainz
[76] http://www.nrel.gov/rredc/pvwatts/changing_parameters.html. standard test conditions. National Renewable Energy Laboratory.
[77] Tauc J. (1968) "Optical properties and electronic structure of amorphous Ge and Si." Mater Res Bull.3(1)pp:37-46.
[78] Ramana CV, Smith RJ, Hussain OM, Chusuei CC, Julien CM. (2005) "Correlation between Growth Conditions, Microstructure, and Optical Properties in Pulsed-Laser-Deposited V2O5 Thin Films." Chemistry of Materials.17(5)pp:1213-1219.
[79] SrinivasaRao K, Rajini Kanth B, Mukhopadhyay PK. (2009) "Optical and IR studies on r.f. magnetron sputtered ultra-thin MoO3 films." Appl Phys A.96(4)pp:985-990.
[80] Bouzidi A, Benramdane N, Tabet-Derraz H, Mathieu C, Khelifa B, Desfeux R. (2003) "Effect of substrate temperature on the structural and optical properties of MoO3 thin films prepared by spray pyrolysis technique." Materials Science and Engineering: B.97(1)pp:5-8.
[81] Madhuri KV, Naidu BS, Hussain OM. (2003) "Optical absorption studies on (V2O5)1−x–(MoO3)x thin films." Materials Chemistry and Physics.77(1)pp:22-26.
[82] KRISHNAKUMAR CSM. (1996) "Electrical and optical properties of MoO3-V2O5 mixed oxide films." Bull Mater Sci.19(4).
[83] Bao D, Yao X, Wakiya N, Shinozaki K, Mizutani N. (2001) "Band-gap energies of sol-gel-derived SrTiO[sub 3] thin films." Applied Physics Letters.79(23)pp:3767.
[84] Ertl GG.(1985) Low energy electrons and surface chemistry. (2nd ed). Deerfield Beach, FL, USA: VCH.
[85] Park Y, Choong V, Gao Y, Hsieh BR, Tang CW. (1996) "Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy." Applied Physics Letters.68(19)pp:2699-2701.
[86] Osikowicz W, Friedlein R, Jong MPd, Sorensen SL, Groenendaal L, Salaneck WR. (2005) "Site-specific electronic structure of an oligo-ethylenedioxythiophene derivative probed by resonant photoemission." New Journal of Physics.7pp:104-104.
[87] Rhee S-W, Yun D-J. (2008) "Metal–semiconductor contact in organic thin film transistors." Journal of Materials Chemistry.18(45)pp:5437.
[88] Kazakova O, Panchal V, Burnett T. (2013) "Epitaxial Graphene and Graphene–Based Devices Studied by Electrical Scanning Probe Microscopy." Crystals.3(1)pp:191-233.
[89] Li X, Zhang W, Wu Y, Min C, Fang J. (2013) "Solution-processed MoS(x) as an efficient anode buffer layer in organic solar cells." ACS applied materials & interfaces.5(18)pp:8823-8827.
[90] Ik Jae Lee C-JY, Tae-Bong Hur and Hyung-Kook Kim. (2006) "Observation of Complete Oxidation of InN to In2O3
in Air at Elevated Temperatures by Using X-ray
Photoemission Spectroscopy." J Korean Phys Soc.49(5)pp:2176-2179.
[91] Mendialdua J, Casanova R, Barbaux Y. (1995) "XPS studies of V2O5, V6O13, VO2 and V2O3." Journal of Electron Spectroscopy and Related Phenomena.71(3)pp:249-261.
[92] Surnev S, Ramsey MG, Netzer FP. (2003) "Vanadium oxide surface studies." Progress in Surface Science.73(4–8)pp:117-165.
[93] Jin A, Chen W, Zhu Q, Yang Y, Volkov VL, Zakharova GS. (2009) "Structural and electrochromic properties of molybdenum doped vanadium pentoxide thin films by sol–gel and hydrothermal synthesis." Thin Solid Films.517(6)pp:2023-2028.
[94] Waldauf C, Schilinsky P, Hauch J, Brabec CJ. (2004) "Material and device concepts for organic photovoltaics: towards competitive efficiencies." Thin Solid Films.451–452(0)pp:503-507.
[95] Servaites JD, Ratner MA, Marks TJ. (2011) "Organic solar cells: A new look at traditional models." Energy & Environmental Science.4(11)pp:4410.
[96] Beiser A.(2003) Concepts of Modern Physics. (6 ed). Boston: McGraw-Hill.