| 研究生: |
吳冠輝 Wu, Guan-Hui |
|---|---|
| 論文名稱: |
以電紡絲法製備含石墨烯同排聚苯乙烯及對排聚苯乙烯纖維 Preparation of iPS filled with graphene and sPS filled with graphene fibers via coaxial electrospinning |
| 指導教授: |
王紀
Wang, Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 電紡絲 、同排聚苯乙烯 、對排聚苯乙烯 、石墨烯 、電紡纖維表面形態 |
| 外文關鍵詞: | electrospinning, isotactic polystyrene, syndiotactic polystyrene, graphene, the surface morphology of electrospun fiber |
| 相關次數: | 點閱:132 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究混摻石墨烯(graphen)於12 wt% iPS/o-DCB溶液中進行電紡,可得到含graphene之奈米電紡纖維,隨著graphene在纖維內所佔比例提高,纖維直徑會上升,當graphene含量大於3 wt%時,纖維直徑有明顯地下降,由SEM與TEM可知部分graphene不易捲曲於纖維內且會裸露在纖維外。
以DSC分析iPS/graphene複合纖維之熱性質,發現纖維內的graphene會抑制iPS結晶,但纖維膜經升溫再降溫形成複材後,發現複材內的graphene會誘發iPS結晶。導電度量測結果顯示iPS/graphene複合纖維之導電percolation threshold為2.50 vol%。
預期以sPS/graphene、aPS溶液分別作為內管與外管溶液,進行電紡製備芯鞘型複合纖維,但卻發現無法藉由調整內外溶液流量使內管sPS溶液進入外管aPS溶液於電紡形成的jet中,最後於cone內累積過多而使cone滴落。
以AFM掃描不同電紡纖維,以了解其表面形態,PET、PBT、PTT電紡纖維表面是由顆粒所組成,其中PBT、PTT電紡纖維經熱處理後,其顆粒結構更加明顯且顆粒高度上升;iPS、sPS電紡纖維表面有垂直纖維方向的條狀結構,aPS電紡纖維表面則有沿纖維方向排列的孔洞結構;Nylon 6電紡纖維表面是由大小不一的顆粒所組成。
The iPS/graphene as-spun fibers were prepared by blending graphene into 12 wt% iPS/o-DCB solutions. Fiber diameter(df) were increased with increasing the content of graphene in the solution and decreased obviously when the content of graphene was larger than 3 wt%. SEM and TEM results showed part of graphene was included in iPS fibers but protuberated.
The 1st heating of DSC results showed the addition of graphene could reduce the crystallizability of iPS within the fibers. And the 2nd heating of results showed the addition of graphene could improve the crystallizability of iPS within the composite materials. From the electrical conductivity measurement, the percolation threshold of iPS/graphene composite fibers is 2.50 vol%.
We used sPS/graphene and aPS solution as the inner and outer solution, and tried to get core/shell fibers via coaxial electrospinning. But we could not adjust the innert and outer flow rate to make sPS solution get into the jet formed by electrospinning aPS solution. Finally, accumulated sPS solution made cone drop.
From the AFM images, the surface of as-spun PET, PBT and PTT fibers were composed of protruding spots. The spots of PBT and PTT fibers were found more obvious and higher after heat treatment. The surface of as-spun iPS and sPS fibers were regular strips perpendicular to the fiber axis. And as-spun aPS fiber showed the holes arranging along the fiber axis. Electrospun Nylon 6 fiber showed the spots which were not of uniform size.
[1]林坤賢,“以電紡絲法製備PBO纖維.”國立成功大學碩士論文(2005).
[2]N. Sasaki, M. Tsukada, “Theory for the effect of tip-surface interaction potential on atomic resolution in forced vibration system of noncontact AFM.”Applied surface science 140,339(1999)
[3]林志成, 林世明, 李世元, “奈米量測技術-原子力顯微鏡在生物分子上之應用”化學67, 83(2009).
[4]N. Ishihara, T. Seimiya, M. Kuramoto, M. Uoi, “Crystalline syndiotactic polystyrene.” Macromolecule19, 2465(1986).
[5]J. W. Ha, K. J. Chu, “Molecular weight distribution of syndiotactic polystyrenes prepared over difference kind of catalysts.” Materials Letters33, 149 (1997).
[6]朱有玲,“電紡同排聚苯乙烯及其複合纖維製程與纖維性質分析.”國立成功大學碩士論文(2012).
[7]G. Natta, P. Corradint, I.W. Bassi, “Crystal structure of isotactic polystyrene.” NuovoCimento 15, 68 (1960)
[8]J. Brandup, E. H. Immergut, E. A. Grulke, A. Abe, D. R. Bloch, “Polymer handbook.” Wiley Interscience : New York (1999).
[9]T. Liu, J Petermann, “Multiple melting behavior in isothermally cold-crystallizationisotacticpolystyrene.”Polymer42,6453 (2001).
[10]P. J. Lemstra, J. Postma, G. Challa, “Molecular weight dependence of the spherulitic growth rate of isotactic polystyrene.” Polymer15, 757 (1974).
[11]Y. Duan, J. Zang, D. Shen, S. Yan,“In situ FTIR studies on the cold-crystallization process and multiple melting behavior of isotactic polystyrene.” Macromolecules36, 4874 (2003).
[12]M. Tosaka, K.Yamaguchi, M. Tsuji, “Latent orientation in the skin layer of electrospun isotactic polystyrene ultrafine fibers.” Polymer 51, 547 (2010).
[13]C. Wang, Y. L. Chu, Y. J. Wu, “Electrospun isotactic nanofibers as a novel -nucleating agent for isotactic polystyrene.” Polymer53, 5404 (2012).
[14]A. Phillips, P. W. Zhu, G. Edward, “Polystyrene as a versatile nucleating agent for polypropylene.” Polymer51, 1599 (2010).
[15]S.Cimmino, E. DiPace, E. Martuscelli, C. Silvestre, “Syndiotactic polystyrene – crystallization and melting behavior.” Polymer32, 1080 (1991).
[16]G. Guerra, V. M. Vitagliano, C. D. Rosa, V. Petraccone, P. Corradini, “Polymorphism in melt crystallized syndiotactic polystyrene samples.”Macromolecule 23, 1539 (1990).
[17]A. M. Evans, E. J. C. Kellar, J. Knowles, C. Galiotis, C. J. Carriere, E. H. Andrews, “The structure and morphology of syndiotactic polystyrene injection molded coupons.” Polymer Engineering and Science37, 153 (1997).
[18]O. Greis, Y. Xu, T. Asano, J. Petermann, “Morphology and structure of syndiotactic polystyrene.” Polymer30, 590 (1989).
[19]C. De. Rosa, G Guerra, V. Petraccone, P. Corradini, “Crystal structure of the -form of syndiotactic polystyrene.” Polymer Journal23, 1435 (1991).
[20]E. J. C. Kellar, C. Galiotis, E. H. Andrews, “Raman vibrational studies of syndiotactic polystyrene. 1. Assignments in a conformational / crystallinity sensitive spectral region.”Macromolecules29, 3515 (1996).
[21]F. Auriemma, V. Petraccone, F. Dal Poggetto, C. De Rosa, G. Guerra, C. ManFredi, P. Corradini, “Mesomorphic form of syndiotactic polystyrene as composed of small imperfect crystals of the hexagonal () crystalline form.” Macromolecules 26, 3772 (1993).
[22]C. Wang, C. L. Huang, Y. W. Cheng, Y. C. Chen, J. Shong, “Radiation effects and re-crystallization mechanism of syndiotactic polystyrene with beta’-crystalline form.” Polymer 48, 7393 (2007).
[23]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science306, 666 (2004).
[24]K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature 457, 706 (2009).
[25]C. Lee, X. Wei, J. W. Kysar, J. Hone, “ Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science321, 385 (2008).
[26]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, “ Modification of graphene properties due to electron-beam irradiation”, Nano Letters8, 902 (2008).
[27]S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. alandin, W. Bao, F. Miao, C. N. Lau, “Thermal conductivity of graphene flakes: Comparison with bulk graphite”, Applied Physics Letters92, 151911 (2008).
[28]邱彥彰,“對排聚苯乙烯/石墨烯奈米複材之微結構、導電與結晶特性研究.”國立成功大學碩士論文(2012).
[29]J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites.” Carbon47, 922 (2009).
[30]H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, “Graphene oxide doped polyaniline for supercapacitors.” Electrochemistry Communications 11, 1158 (2009).
[31]D. U. Fangming, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, K. I. Winey, “Nanotube networks in polymer nanocomposites: rheology and electrical conductivity.”Macromolecules 37, 9048 (2004).
[32]S. D. McCullen, D. R. Stevens, W. A. Roberts, S. S. Ojha, L. I. Clarke and R. E. Gorga, “ Morphological, electrical, and mechanical characterization of electrospunnanofiber mats containing multiwalled carbon nanotubes .”Macromolecules 40, 997 (2007).
[33]S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E.J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, “Graphene-based composite materials.”Nature442, 282 (2006).
[34]G. Binning, C. F. Quate, C. Gerber,“Atomic force microscope.”Physical Review Letters 56, 930(1986).
[35]S. Nurkhamidah, E. M. Woo, “Phase-separation-induced single-crystal morphology inpoly(L-lactic acid) blended with poly(1,4-butylene adipate) at specific composition.”The Journal of Physical Chemistry 115,13127(2011).
[36]C. H. Zhang, Y. D. Huang, Y. D. Zhao, “Surface analysis of -ray irradiation modified PBO fiber.”Material Chemistry and Physics 92, 245(2005).
[37]Y. Wang, T. H. Hahn, “AFM characterization of the interfacial properties of carbon fiber reinforced polymer composites subjected to hygrothermal treatments”, Composites Science and Technology 67, 92(2007).
[38]C. Wang, C. R. Liu, “Transcrystallization of polypropylene composites: nucleating ability of fibers”, Polymer 40, 289(1999).
[39]C. Wang, F. H. Liu, W. H. Huang, “Electrospun-fiber induced transcrystallization of isotactic polypropylene matrix”, Polymer 52, 1326(2011).
[40]A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang,K. S. Novoselov, S. Roth, A. K. Geim, “Ramanspectrum of graphene and graphene layers.”,Physical Review Letters97, 187401 (2006).
[41]盧信安,“以高溫電紡絲法製備結晶性高分子纖維膜.”國立成功大學碩士論文(2007).
[42]J. H. Yu, S. V. Fridrikh, G. C. Rutledge,“Production of submicrometer diameter fibers by two-fluid electrospinning.”Advanced materials 17, 1562(2004).
[43]吳怡君,“不同電紡纖維對聚丙烯穿晶形成能力的影響.”國立成功大學碩士論文(2011).