| 研究生: |
詹婷婷 Chan, Ting-Ting |
|---|---|
| 論文名稱: |
從人類細胞和繼代細胞培養中純化出的屈公熱病毒顆粒的性質分析 Characterize the properties of chikungunya virus particle derived from ex vivo and in vitro culture system |
| 指導教授: |
吳尚蓉
Wu, Shang-Rung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 低溫電子顯微鏡 、屈公熱病毒 、離體環境培養系統 、屈公熱病毒囊泡 、三維結構重組 |
| 外文關鍵詞: | Cryo-electron microscopy, Chikungunya virus, ex vivo culture system, CHIKV vesicle, three-dimensional reconstruction |
| 相關次數: | 點閱:84 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
屈公熱病毒是一種蟲媒病毒,屬於披衣病毒科中的甲病毒屬。其在1953年時於非洲被鑒定並開始散播至亞洲等蚊子肆虐的地區,直到最近又再現並爆發於歐洲以及美洲等五大洲。而目前台灣還沒有本土案例的產生,已知病例皆是由國外旅遊回國後才發現。屈公熱病毒的低溫電子顯微鏡結構已經於2013被發表,其為二十面體病毒,被歸類於 T = 4 準對稱病毒之一。其二十面體上具有12個五聚體環繞於每個五重頂點並帶有30個六聚體環繞於二十面體上雙重軸,而在成熟的屈公熱病毒顆粒表面上共有80個刺突結構,每一個刺突皆由三個E1和E2形成的異源二聚體所組成。在先前的研究中已經得知E1蛋白帶有融合環,而E2蛋白則可能帶有和宿主細胞接觸的接收器和具有在正常環境下能保護融合環的功能。另外,我們也已經得知當屈公熱病毒在感染宿主細胞時其結構是如何變化的。雖然我們已經在結構上對屈公熱病毒有許多的了解,但現在市面上仍然沒有能夠有效的疫苗進行預防,也沒有藥物能夠治療屈公熱。而目前正在發展中的屈公熱疫苗其製備方式皆以體外培養環境為主。我們的合作者,成功大學的彭貴春教授以及其實驗室成員發現登革病毒在體外環境以及病人體內中所呈現的型態有所不同。而由人類初代細胞所培養出的登革病毒和病人體內的病毒呈現一樣的型態。因此我們假設屈公熱病毒在試管內以及體內環境時可能具有不同的型態,以至於試管內所解讀的病毒型態及生化特性無法適用在體內,造成疫苗發展上的困難。
在我們這次的研究中,我們使用減毒過後的屈公熱病毒疫苗株去感染由人類骨髓所取得的初代細胞和非洲綠猴腎上皮細胞。將取得的兩種型態的屈公熱病毒利用低溫電子顯微鏡的技術去確認其型態是否會有差別。由體外環境所產生的屈公熱病毒在經過三維重組後,呈現直徑為60奈米的二十面體單結構,其外表呈現共80個刺突結構。這樣的三維重組結構特徵與2013年所發表的屈公熱病毒結構相似。另外,由人類初代細胞所產生的屈公熱病毒在低溫電子顯微鏡的觀察下呈現與從體外環境所產生的屈公熱病毒完全不同的型態,病毒顆粒被膜所包覆,高度專一抗體免疫金標定實驗證實此膜包裹的粒子是屈公熱病毒,我們在此稱為屈公熱病毒囊泡。由於病毒顆粒外層的膜,使得此離體環境所產生屈公熱病毒的型態呈現一個不規則的型態,因此無法使用適用於純度高且結構均一度高的高解析單粒子三維結構重組技術來得到其三維結構,但從低溫電子顯微鏡得到的影像及免疫金標定實驗我們可以得知,屈公熱病毒和登革病毒一樣由離體環境和體外環境所培養出的病毒會呈現不同的型態。這樣的發現或許可以在研發抗屈公熱藥物和其疫苗的製造提供更多有用的依據。
Chikungunya virus (CHIKV) belongs to Alphavirus genus of Togaviridae family. CHIKV was identified in Africa in 1953 and has recently reemerged, causing explosive outbreak and reaching 5 continents. So far, there is no autochthonous CHIKV infection in Taiwan. CHIKV is icosahedral with T = 4 symmetry arrangement. The viral particle consists of 12 pentamers around each fivefold vertex and 30 hexamers around each icosahedral twofold axis. The outer surface of mature CHIKV particles is composed of 80 spikes, each spike is formed by three copies of an E1–E2 heterodimer. E1 protein contains fusion loop, and E2 proteins carries putative receptor binding site and protects fusion loop before activation. The conformational change of CHIKV fusion has been studied. Although a lot of studies on CHIKV, there are no effective vaccine and medicine which are specific for CHIKV. The currently production of CHIKV vaccine which is developing is in vitro culture system. In 2015, our cooperator, Prof. Perng and his team in National Cheng Kung University, found that dengue virus (DENV) presented different morphologies in vitro and in vivo. And ex vivo DENV which derived from human primary cell shares the same features with in vivo DENV. Hence, we suspected that CHIKV, which is also transmitted by Aede mosquito, may has the same phenomenon.
Here, CHIKV attenuated vaccine strain 181/25 clone was used to infect human primary cells isolated form bone marrow and vero cell line to present the ex vivo and in vitro experiments. Cryo-EM and immunogold labeling were used to identify the morphology. The features of our cryo-EM in vitro CHIKV structure agreed with the features of CHIKV structure published in 2013. On the other hand, cryo-EM images showed that ex vivo CHIKV was wrapped by membrane, called CHIKV vesicle here. Immunogold labeling and affinity grid confirmed that the vesicle-like particle was CHIKV. Even though we couldn’t solve the CHIKV vesicle 3D structure using high resolution single particle reconstruction approach due to the heterogeneity of the ex vivo CHIKV production. The TEM images analyses showed that CHIKV presented different morphologies derived from in vitro and ex vivo culture system. Our finding here may provide the hints for antiviral candidates and effective vaccine development.
Key words: Cryo-electron microscopy, Chikungunya virus, ex vivo culture system, CHIKV vesicle, three-dimensional reconstruction
1. Schwartz, O. and M.L. Albert, Biology and pathogenesis of chikungunya virus. Nat Rev Micro, 2010. 8(7): p. 491-500.
2. Thiboutot, M.M., et al., Chikungunya: A Potentially Emerging Epidemic? PLOS Neglected Tropical Diseases, 2010. 4(4): p. e623.
3. Sourisseau, M., et al., Characterization of Reemerging Chikungunya Virus. PLOS Pathogens, 2007. 3(6): p. e89.
4. Petitdemange, C., N. Wauquier, and V. Vieillard, Control of immunopathology during chikungunya virus infection. Journal of Allergy and Clinical Immunology, 2015. 135(4): p. 846-855.
5. 楊清鎮, 王. 屈公熱. Available from: https://www.nics.org.tw/old_nics/magazine/17/06/17-6-05.htm.
6. 傳染病統計資料查詢系統. Available from: https://nidss.cdc.gov.tw/ch/SingleDisease.aspx?dc=1&dt=2&disease=A920.
7. van Duijl-Richter, M., et al., Early Events in Chikungunya Virus Infection—From Virus CellBinding to Membrane Fusion. Viruses, 2015. 7(7): p. 2792.
8. Sun, S., et al., Structural analyses at pseudo atomic resolution of Chikungunya virus and antibodies show mechanisms of neutralization. Elife, 2013. 2: p. e00435.
9. Wagner, J.M., et al., Enhanced Production of Chikungunya Virus-Like Particles Using a High-pH Adapted Spodoptera frugiperda Insect Cell Line. PLOS ONE, 2014. 9(4): p. e94401.
10. Weaver, S.C., et al., Chikungunya virus and prospects for a vaccine. Expert review of vaccines, 2012. 11(9): p. 1087-1101.
11. Rey, F.A., et al., The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature, 1995. 375(6529): p. 291-8.
12. Lescar, J., et al., The Fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell, 2001. 105(1): p. 137-48.
13. Porta, J., et al., Structural Studies of Chikungunya Virus-Like Particles Complexed with Human Antibodies: Neutralization and Cell-to-Cell Transmission. J Virol, 2015. 90(3): p. 1169-77.
14. Smith, T.J., et al., Putative receptor binding sites on alphaviruses as visualized by cryoelectron microscopy. Proc Natl Acad Sci U S A, 1995. 92(23): p. 10648-52.
15. Voss, J.E., et al., Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature, 2010. 468(7324): p. 709-12.
16. Li, L., et al., Structural changes of envelope proteins during alphavirus fusion. Nature, 2010. 468(7324): p. 705-8.
17. Snyder, A.J. and S. Mukhopadhyay, The alphavirus E3 glycoprotein functions in a clade-specific manner. J Virol, 2012. 86(24): p. 13609-20.
18. Elshuber, S., et al., Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus. J Gen Virol, 2003. 84(Pt 1): p. 183-91.
19. Gibbons, D.L., et al., Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature, 2004. 427(6972): p. 320-5.
20. Harrison, S.C., Viral membrane fusion. Nat Struct Mol Biol, 2008. 15(7): p. 690-8.
21. Abdelnabi, R., J. Neyts, and L. Delang, Towards antivirals against chikungunya virus. Antiviral Research, 2015. 121: p. 59-68.
22. White, A., S. Berman, and J.P. Lowenthal, Comparative Immunogenicities of Chikungunya Vaccines Propagated in Monkey Kidney Monolayers and Chick Embryo Suspension Cultures. Applied Microbiology, 1972. 23(5): p. 951-952.
23. Schwameis, M., et al., Chikungunya vaccines in development. Human Vaccines & Immunotherapeutics, 2016. 12(3): p. 716-731.
24. Smalley, C., et al., Status of research and development of vaccines for chikungunya. Vaccine, 2016. 34(26): p. 2976-2981.
25. Levitt, N.H., et al., Development of an attenuated strain of chikungunya virus for use in vaccine production. Vaccine, 1986. 4(3): p. 157-162.
26. Gorchakov, R., et al., Attenuation of Chikungunya virus vaccine strain 181/clone 25 is determined by two amino acid substitutions in the E2 envelope glycoprotein. J Virol, 2012. 86(11): p. 6084-96.
27. Muthumani, K., et al., Immunogenicity of novel consensus-based DNA vaccines against Chikungunya virus. Vaccine, 2008. 26(40): p. 5128-34.
28. Mallilankaraman, K., et al., A DNA vaccine against chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates. PLoS Negl Trop Dis, 2011. 5(1): p. e928.
29. Hallengard, D., et al., Novel attenuated Chikungunya vaccine candidates elicit protective immunity in C57BL/6 mice. J Virol, 2014. 88(5): p. 2858-66.
30. Tretyakova, I., et al., DNA vaccine initiates replication of live attenuated chikungunya virus in vitro and elicits protective immune response in mice. J Infect Dis, 2014. 209(12): p. 1882-90.
31. Akahata, W., et al., A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat Med, 2010. 16(3): p. 334-338.
32. Ramsauer, K., et al., Immunogenicity, safety, and tolerability of a recombinant measles-virus-based chikungunya vaccine: a randomised, double-blind, placebo-controlled, active-comparator, first-in-man trial. The Lancet Infectious Diseases, 2015. 15(5): p. 519-527.
33. Brandler, S., et al., A recombinant measles vaccine expressing chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with chikungunya virus. Vaccine, 2013. 31(36): p. 3718-25.
34. Plante, K., et al., Novel Chikungunya Vaccine Candidate with an IRES-Based Attenuation and Host Range Alteration Mechanism. PLoS Pathogens, 2011. 7(7): p. e1002142.
35. Burghardt, R.C. and R. Droleskey, Transmission electron microscopy. Curr Protoc Microbiol, 2006. Chapter 2: p. Unit 2B.1.
36. Bai, X.C., G. McMullan, and S.H. Scheres, How cryo-EM is revolutionizing structural biology. Trends Biochem Sci, 2015. 40(1): p. 49-57.
37. Fabig, G., et al., Labeling of ultrathin resin sections for correlative light and electron microscopy. Methods Cell Biol, 2012. 111: p. 75-93.
38. De Carlo, S. and J.R. Harris, Negative staining and Cryo-negative Staining of Macromolecules and Viruses for TEM. Micron (Oxford, England : 1993), 2011. 42(2): p. 117-131.
39. Yu, G., et al., Single-step antibody-based affinity cryo-electron microscopy for imaging and structural analysis of macromolecular assemblies. J Struct Biol, 2014. 187(1): p. 1-9.
40. Yu, G., K. Li, and W. Jiang, Antibody-based affinity cryo-EM grid. Methods, 2016. 100: p. 16-24.
41. Hsu, A.Y., et al., Infectious dengue vesicles derived from CD61+ cells in acute patient plasma exhibited a diaphanous appearance. Sci Rep, 2015. 5: p. 17990.
42. Helft, J., et al., GM-CSF Mouse Bone Marrow Cultures Comprise a Heterogeneous Population of CD11c(+)MHCII(+) Macrophages and Dendritic Cells. Immunity, 2015. 42(6): p. 1197-211.
43. Ohradanova-Repic, A., et al., Differentiation of human monocytes and derived subsets of macrophages and dendritic cells by the HLDA10 monoclonal antibody panel. Clin Trans Immunol, 2016. 5: p. e55.
44. NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules (NIH Guidelines) DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health, April 2016.
45. Lim, C.K., Virus Isolation and Preparation of Sucrose-Banded Chikungunya Virus Samples for Transmission Electron Microscopy. Methods Mol Biol, 2016. 1426: p. 153-62.
46. Boehme, K.W., et al., Linkage of an alphavirus host-range restriction to the carbohydrate-processing phenotypes of the host cell. J Gen Virol, 2000. 81(Pt 1): p. 161-70.
47. Yu, G., et al., Antibody-Based Affinity Cryoelectron Microscopy at 2.6-A Resolution. Structure, 2016. 24(11): p. 1984-1990.
48. Wikan, N., et al., Chikungunya Virus Infection of Cell Lines: Analysis of the East, Central and South African Lineage. PLOS ONE, 2012. 7(1): p. e31102.
49. Newcomb, J.D., et al., Umbilical Cord Blood Research: Current and Future Perspectives. Cell transplantation, 2007. 16(2): p. 151-158.
50. Birbrair, A. and P.S. Frenette, Niche heterogeneity in the bone marrow. Annals of the New York Academy of Sciences, 2016. 1370(1): p. 82-96.
51. Chikungunya. April, 2017; Available from: http://www.who.int/mediacentre/factsheets/fs327/en/.
52. Noranate, N., et al., Characterization of Chikungunya Virus-Like Particles. PLOS ONE, 2014. 9(9): p. e108169.
53. Naim, H.Y., Measles virus: A pathogen, vaccine, and a vector. Human Vaccines & Immunotherapeutics, 2015. 11(1): p. 21-26.
54. Human and Mouse CD marker handbook. Biosciences.
55. Antibodies for multicolor flow cytometry, functional assays ans immunohistochemistry. Available from: https://www.thermofisher.com/tw/zt/home/life-science/cell-analysis/cell-analysis-learning-center/cell-analysis-resource-library/ebioscience-resources/human-cd-other-cellular-antigens.html.
56. Martinez, W.M. and P.G. Spear, Structural features of nectin-2 (HveB) required for herpes simplex virus entry. J Virol, 2001. 75(22): p. 11185-95.
57. Takai, Y. and H. Nakanishi, Nectin and afadin: novel organizers of intercellular junctions. J Cell Sci, 2003. 116(Pt 1): p. 17-27.
校內:2022-08-01公開