簡易檢索 / 詳目顯示

研究生: 李禎常
Lee, Chen-Chang
論文名稱: 破裂岩體地下水流與污染物平均傳輸統計分佈性質之研究
Behaviors of groundwater flow and particles average transportation in fracture networks
指導教授: 李振誥
Lee, Cheng-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 102
中文關鍵詞: 破裂面破裂岩體地下水流量統計分佈行為污染物傳輸
外文關鍵詞: fracture rock, fracture, particle transport, statistic distribution, groundwater flow
相關次數: 點閱:101下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文以破裂面幾何參數(破裂面長、破裂面方位、破裂面內寬與破裂面中心位置)為基礎,考慮破裂面長度為負指數分布、方位為均佈分布、破裂面內寬為對數常態分布及破裂面中心位置為卜松分佈。本文建立二維隨機離散破裂面模式,並採達西定律與質量平衡觀念,代入特定邊界條件以及水平衡方程式求得破裂面相交各節點之水頭,依其數值解可得節點之流量,再依其比例進行蒙地卡羅法之質點追蹤技術,得質點濃度累積穿透曲線,並以穿透曲線方程式驗證。
      破裂岩體地下水流之研究為—假設情況下,其破裂面數越多的情況及破裂面越長時,地下水流量分佈行為經Chi-square檢定最適分佈為常態分佈。在不同內寬的情況下,其地下水流量分佈行為為常態分佈。在破裂面數較少且破裂面長較短時,其地下水流量分佈行為有一明顯的偏態。破裂岩體邊界露頭對地下水流量關係,以地質統計方法計算破裂岩體兩端露頭對流量因子之碎形維度值,發現於邊界露頭輸入端其碎形維度值相對較小,代表邊界露頭輸入端對流量相關性較大,經多次模擬結果發現其地下水流量最大時,其露頭數將會存在於某一區間。
      污染物於破裂岩體中傳輸研究,本研究假設不同破裂面相交角度下,可發現其在傳輸維度方面,其污染物運動距離(ln<r2>)與時間(ln<t>)之關係呈線性相關,其斜率值約為1.4~1.64間。百分之五十傳輸時間(T50)與百分之九十之傳輸時間(T90)隨破裂面角度變化於相同之角度時,其傳輸時間於正負角度偏差時相同。在整體岩體延散度性質,其性質也隨破裂面相交角度變化而有對稱行為,另外假設案例下,平均傳輸時間也隨破裂面數少與破裂面長度較短時,其分佈行為有一明顯向左偏態行為。
      應用蘭嶼地區破裂面資料,地下水流量之統計分佈行為,經Chi-square檢定出最適分佈為Beta分佈,而污染物平均傳輸時間分佈行為,經Chi-square檢定出最適分佈為Logistic分佈。而經本模式預測污染物傳輸特性,顯示污染物平均傳輸速率在0.528 m/day、污染物運動距離(ln<r2>)與傳輸時間(ln<t>)之斜率值為1.64,平均延散度為0.91m。當考慮現地以釷-234放射性元素貯放時,當外洩時,其放射性污染物平均傳輸時間(T50,百分之五十污染物到達時間)為0.92,也就是到達全部ㄧ半濃度之機率有九成;磷-32時,當外洩時,平均傳輸時間(T50,百分之五十污染物到達時間)累積到達機率為0.18,也就是到達全部ㄧ半濃度之機率有一成八。

      In this study, the discrete fracture model was performed to investigate the behaviors of the fluid flow and particle transport in the fracture network. A field case study was also provided in low-level nuclear waste repository site in Lan-Yu area, Taiwan. Several procedures are executed to investigate the phenomenon of the flow and particle transport in the fracture rock. In order to construct the fracture network, called as the discrete fracture mode, fracture parameters are generated by the specific distribution accompany with the Mote Carlo method. For instance, the centers of fractures, fracture lengths and apertures are assumed to be the Poisson’s distribution, negative exponential distribution and lognormal distribution, respectively. Furthermore, the flow field in the rock was solved using the mass-balance equation with specified boundary conditions. Moreover, the particle transport field was solved under the assumption that the amount of particles is proportional to the flow rate and the particles are released under the up-stream flow field. The breakthrough curve related to accumulated percentage of the particles can be obtained. The geostatic method was also applied to calculate the fractal value related to the outcrops against the flow
      In our study cases, results showed that when the fracture network was involved more numbers of fractures and longer length of fractures, the groundwater flow is to be distributed as normal . By the way, the groundwater flow against the aperture is also to be distributed as normal. However, in the case of less fractures and shorter fracture length, the flow distribution seems apparently to be biased as compared with normal distribution. The impact of the input boundary outcrops for groundwater flow was more significant than that of the output boundary outcrops.
      Under the various fracture angle, simulation results for particle transport showed that the distance particles traveling and the traveling time is positively linear and the slope value is from 1.4 to 1.64. The dispersivity and the average traveling time of particles traveling were dependent on the fractures interception angle.
      From the data in Lan-Yu area, our simulation results indicated that the groundwater flow distribution is to distribute as Beta distribution, and the particles average traveling time trend to be Logistic distribution . The average traveling velocity is to be 0.528 m/day. The slope of the distance particles traveling with the traveling time is the value of 1.64, and the dispersivity is the value of 0.91m as comparing to the value of 1m using the Sauty method. The average traveling time accumulated probability of the radioactive element 234Th is the value of 0.92 and the average traveling time accumulated probability of 32P is the value of 0.18.

    中文摘要 I 英文摘要 III 誌謝 V 表目錄 IX 圖目錄 X 符號表 XIII 第一章 緒論 1 1-1 研究背景與目的 1 1-2 研究方法 1 1-3 研究架構與流程 2 第二章 文獻回顧 4 2-1 破裂面模式 4 2-1-1 離散模式 4 2-1-2 連續孔隙模式 5 2-1-3 破裂面參數 7 2-2 地下水滲流與透析理論 9 2-3 污染物傳輸 11 第三章 離散破裂面模式 13 3-1 前言 13 3-2 離散破裂面模式 13 3-2-1 破裂面參數 15 3-2-2 破裂面參數性質與分佈型態 15 3-3 離散破裂面模式建立過程 18 3-4 小結 24 第四章 破裂岩體地下水流 25 4-1 前言 25 4-2 透析理論與地下水流理論 25 4-3 破裂岩體地下水平均流量統計性質 29 4-3-1 岩體模式設計情況 29 4-3-2 設計情況之探討 30 4-4 破裂岩體露頭與地下水流量相關性分析 34 4-4-1 露頭與地下水流量因子之碎形關係 34 4-4-2 碎形理論 35 4-4-3 碎形維度計算方法 37 4-4-4 露頭與流量之碎形分析 41 4-5 小結 49 第五章 污染物傳輸 51 5-1 前言 51 5-2 污染物傳輸之基本理論 51 5-2-1 污染物運動 51 5-2-2 蒙地卡羅法質點追蹤技術 54 5-2-3 污染物傳輸現象 56 5-2-4 延散現象解析 58 5-3 研究內容 61 5-3-1 合理質點數探討 62 5-3-2 派克利數( )於不同破裂幾何參數之穿透 曲線擬合情況 64 5-3-3 破裂面角度變化時之污染物傳輸性質 66 5-3-4 污染物平均傳輸時間之統計性質 72 5-4 小結 74 第六章 現場資料應用 77 6-1 前言 77 6-2 蘭嶼地區介紹 77 6-3 蘭嶼地區破裂面資料 79 6-4 蘭嶼地區破裂岩體地下水流量與污染物傳輸相關應用 82 6-5 小結 91 第七章 結論與建議 92 7-1 結論 92 7-2 建議 93 參考文獻 95

    參考文獻
    1. Baecher, G. B., Statistical Analysis of Rock Mass Fracturing.J. Math. Geol., Vol.15, pp. 329-347, (1983).
    2.Bear, J., Dynamics of Fluids in Porous Media. Elsevier , New York, (1972)
    3.Barenblatt, G.E., Zheltov, I.P., and Kochina, I.N., Basic Concepts in the Theory of Homogeneous Liquids in Fissured Rocks, Journal of Appl Math Mech,24(5),1286-1303 ,(1960).
    4.Bill, X. Hu., Hai Huang., and Dongxiao Zhang., Stochastic analysis of solute transport in heterogeneous, dual-permeability media , Water Resource Research, 38(9), 1175 doi:10.1029/2001WR00042 (2002).
    5.Call, R. D., Savely, J. P. and Nicholas, D. E., Estimation of Joint Set Characteristics from Surface Mapping Data,17th U.S. Symp. On Rock Mech., 2B2-1-2B2- (1976).
    6.Chiles, J. P., Fractal and Geostatistical Methods for Modeling of A Fracture Nerwork, Mathematical Geology, 20(6), 631-654 ,(1988).
    7.Cruden, D. M., Describing The Size of Discontinuities, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 14, 133-137 , (1977).
    8.Dershowitz, W., S., Rock Joint System, Ph.D. Thesis Massachusetts Institute of Technology, Cambridge, Massachusetts, (1984).
    9.Dershowitz, W., S. and Fidelibus, C., Derivation of Equivalent Pipe Network Analogues for Three-Dimensional Discrete Fracture Networks by The Boundary Element Method, Water Resource Research, 35(9), 2685-2691 , (1999).
    10.Dershowitz, W., S., and Miller, I., “Dual Porosity Fracture Flow and Transport,” Geophys Res Lett , Vol.22, pp.1441-1444 (1995).
    11.Dreuzy, J. R., Davy, P. and Bour, O., Hydraulic Properties of Two Dimensional Random Fracture Networks Following A Power Law Distribution 1.Effective Connectivity, Water Resource Research, 37(8),2065-2078 ,(2001).
    12.Englman, R. Y., Gur, and Z., Jaeger , Fluid flow through a crack network in rocks, J. of Applied Mechanic, 50 ,707-711,(1983).
    13.Goodman, R.E., Methods of Geological Engineering in Discontinuous Rock, West, St. Paul, MN, 58-90 (1976).
    14.Grace, W. Su., Jil, T. Geller., Karsten Pruess., and James R.,Hunt., Solute transport along preferential paths in unsaturated fractures , Water Resource Research, 37(10), 2481-2491(2001).
    15.Hakami, E. and Olofsson, O., Thermo-Mechanical Effects Around A Radioactive Waste Repository. FLAC and Numerical Modeling in Geomechanics, 311-316 ,(1999).
    16.Su., H. C and Wolfgang Kinzelbach., Application of 2-D random generators to the study of solute transport in fractures , Journal of the Chinese Institute of Engineers, 24(3), 397-403. (2001).
    17.Johnson, J., and S. R. Brown, Experimental mixing variability in intersecting natural fractures, Geophys. Res. Lett., 28(22), 4303-4306, (2001).
    18.Law, A. M. and Kelton, W. D., Simulation Modeling and Analysis, McGraw-Hill International Edistionsm New-York, U.S.A., 420-492, (1991).
    19.Lin, B. S., and Lee, C.H. Percolation and Dispersion of Mass Transport in Saturated Fracture Network, Water Resource Management, 12, 409-432, (1998).
    20.Lin, B. S., Lee, C.H. and Yu, J.L., Analysis of Groundwater Seepage of Tunnels in Fracture Rock, Journal of The Chinese Institute of Environment Engineers, 23(3), 155-160, (2000).
    21.Long, J.C.S., Remer, C.R., and Witherspoon, P.A., The Relationship of the Degree of Interconnection to Permeability of Fracture Networks, Water Resource Research, 90(B4), 3087-3098 , (1985).
    22.Long, J.C.S., Remer, C.R., Wilsion, C.R., and Witherspoon, P.A., Porous Media Equivalents for Networks of Discontinuous Fractures,Water Resource Research, 18(3), 645-648, (1982).
    23.Mandelbrot, B. B., Fractals:form, chance, and dimension, San Francisco.(1977).
    24.Mandelbrot, B. B., How long is the coast of Britain Statistical self-similarity and fractional dimension, Science, 155, 636-638.(1967).
    25.Moench, Allen F., Double-Porosity Models for a Fissured Groundwater Reservoir with Fracture skin, Water Resource Research, 20(7), 831-846,(1984)
    26.Mourzenko, V. V., F. Yousefian, B. Kolbah, J,-F. Thovert, and P. M. Adler, Solute transport at fracture intersections, Water Resource Research. 38(1), 1000, doi:10.1029/2000WR000211,(2002).
    27.Nordqvist, A. W., Y. W., Tsang, B., Dverstorp , and J., Anderson, A variable aperture fracture network model for flow and transport in fractured rocks, Water Resource Research. 35(11), 3361-3373,(1999)
    28.Novakowski, K.S., G. V., Evans D. A., Lever and K. G., Raven, A field example of measuring hydrodynamic dispersion in a single fracture, Water Resource Research. 21, 1165-1174, (1985).
    29.Oda, M.,Permeability Tensor for Discontinuous Rock Masses. Geotech, 35,483-495 ,(1985).
    30.Pahl, P. J.,Estimation The Mean Length of Discontinuity Traces, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 18, 221-228, (1981).
    31.Park, Y.-J., K,-K., Lee G. Kosakowski, and B. Berkowitz, Transport behavior in three-dimensional fracture intersections, Water Resource Research. 39(8), 1215, doi:10.1029/2002WR001801,(2003).
    32.Piggott, A.R., Fractal relations for the diameter and trace length of dis-shaped fractures, Journal of Geophysics Research, 102(B8), 1800-1821 (1997).
    33.Priest, S. D. and Hudson, J. A., Discontinuity Spacings in Rock. International Journal of Rock Mechanics and Mining Sciences, 113, 135-148, (1976).
    34.Priest, S. D. and Samaniego, A., A Model for The Analysis of Discontinuity Characteristic in Two Dimension, Proc. 5th Cong. ISRM, Melbourn, F199-F207 ,(1983).
    35.Priest, S. D. and Samaniego, A., A Model for The Analysis of Discontinuity Characteristic in Two Dimension, Proc. 5th Cong. ISRM, Melbourn, F199-F207 , (1983).
    36.Priest, S. D., Discontinuity analysis for rock engineering, Chapman and Hall ,(1993).
    37.Robinson, P. C., Connectivity , flow and transport in network models of fractured media, Ph.D. Thesis, St. Catherines’s College, (1984).
    38.Robinson, P. C., Connectivity of fracture systems – a percolation theory approach, J. of Phys. A. Math. Gen., 16 605-614, (1983).
    39.Rouleau, A., and Gale, J.E., Stochastic Discrete Fracture Simulation of Groudwater Flow into an Underground Excavation in Granite, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 24(2), 99-112 (1987).
    40.Sahimi, M., and A. O., Imdakm, The effect of morphological disorder on hydrodynamic dispersion in flow through porous media, J. of Phys. A. Math. Gen., 21 3833-3870, (1988).
    41.Sauty J.P., An analysis of hydrodispersive transfer in aquifer , Water Resource Research, 16(1), 145-148, (1980).
    42.Schwartz, F. W., and Smith, L., A continuum Approach for Modeling Mass Transport in Fractured Media, Water Resource Research, 19(4), 959-969,(1988).
    43.Schwartz, F. W., Smith, L., and Crowe, AS., A stochastic analysis of macroscopic dispersion in fracture media, Water Resource Research, 19(5), 1253-1265, (1983).
    44.Shante, V. L., and S., Kirkpatrick, An introduction to percolation theory, Advances in Physics, 20 , 325-356, (1971).
    45.Shen, W., and P. D. Zhao, Multidimensional self-affine distribution with application in geochemistry, Mathematical Geology, 34(2), (2002).
    46.Smith, L., and Schwartz, F. W., A analysis of influence of fracture geometry on mass transport in fracture media, Water Resource. Research, 20(9), 1241-1252, (1984).
    47.Snow, D.T., The Frequency and Apertures of Fractures in Rock, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 7, 23-40 ,(1970).
    48.Stauffer, D., Introduction to percolation theory, Taylor and Franics London and Philadelphia,(1985).
    49.Stockman, H. W., J. Johnson. and S. R. Brown, Mixing at fracture intersections: Influences of channel geometry and the Reynolds and Peclet numbers ,Geophys. Res. Lett., 28(22), 4299-4302, (2001)
    50.Tal, A., and G., Dagon, Flow toward storage tunnels beneath water table 1.two-dimensional flow, Water Resource Research , 19(1), 241-249, (1993).
    51.Villaescusa, E. and Brown. E. T., Characterizing Joint Spatial Correlation Using Geostastical Methods, Rock Joint, Barton and Stephansson, Balkema, 115-122 , (1990).
    52.Warren, J.E., and Root, P.J., The Behavior of Naturally Fractured Reservoirs,Trans. Soc. Pet. Eng. AIME, 3(3),245-255, (1963).
    53.Wei, Z. Q., Egger, P. and Descoeudres, F., Permeability Predictions for Jointed Rocked Masses, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(3), 251-261, (1995).
    54.Witherspoon, P.A., Wang, J.C.Y., Iwall, K., and Gale, J.E., Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture, Water Resource Research, 16, 1016-1024 (1980).
    55.Zhang, X. and Sanderson, D. J., Numerical Modelling of the Effects of Fault Slip on Fluid Flow around Extensional Faults, J. Struct. Geol, 18, 108-119, (1996a).
    56.Zimmerman, R. W., Chen, G., Hadgu, T. and Bodvarsson, G. S., A Numerical Dual-Porosity Model With Semianalytical Treatment of Fracture/Matrix Flow , Water Resource Research, 29(7), 2127-2137, (1993).
    57.台灣電力公司核能廢料管理處委託原子能委員會核能廢料管理處,「我國用過核燃料長程處置計劃」,蘭嶼地質調查報告書,(1991)。
    58.吳育生,「破碎岩體中破裂面特性及透水係數張量之研究」,碩士論文,國立成功大學礦冶及材料科學研究所,臺南(1994)。
    59.李宗仰、劉長齡,「台灣主要河川之碎形特性」,土木水利季刊,第21卷,第四期,3-11頁,(1995)。
    60.李振誥、余進利「節理與流動模型」,地工技術雜誌,33,第68-82頁,(1991)。
    61.李振誥、李森吉、張瑞麟、陳時祖,「估計岩體中不連續面組數,及各組之平均位態與頻率之探討」,地工技術雜誌,第39期,64-76頁,(1992)。
    62.李振誥「破碎岩體地下水流及污染傳輸模式之評選及應用於示範場址(一)-流動與傳輸特性及模式之研究」,原能會物管處委託研究報告,(1992)。
    63.林宏奕、李振誥、洪浩原、陳尉平,「應用離散破裂面模式於岩體隧道滲流之研究-以坪林隧道為例」,中國土木水利工程學刊,第十四卷,第三期,第 429-439頁(2002).
    64.林裕彬、鄧東波、吳振發,「景觀生態計量方法於農業景觀生態系統之空間結構探討」,農業工程學報,第47卷,第二期,74-91頁,(1991)。
    65.林碧山,「破裂岩體地下水滲流與溶質傳輸」,博士論文,國立成功大學資源工程學系,臺南(2000)。
    66.林碧山,「破裂面幾何參數對地下水中質點傳輸之研究」,碩士論文,國立成功大學資源工程學系,臺南(1993)。
    67.林碧山、李振誥、李禎常,「破裂面參數與質點傳輸行為關係」,電子計算機於土木水利工程應用研討會,台北(2003).
    68.林碧山、李振誥、李禎常,「破裂面網路流量與質點平均傳輸時間之統計性質」,第一屆資源工程研討會,台南(2004).
    69.徐年盛、郭振泰、朱文生、王曉中、江崇榮、張德鑫、吳呈懋、傅大章、高蔚明,「放射性廢料及附近地區地下水流水質傳輸模擬之研究(一)」,行政院原子能委員會委託台大土木工程研究所建教合作計畫,(1991)。
    70.許廣宗,「地表補注對破裂岩體入滲行為之研究—應用蘭嶼地區安山岩體」,碩士論文,國立成功大學資源工程研究所,臺南,(1996)。
    71.陳榮華,「岩體破裂面統計特性分析與污染物傳輸之研究」,碩士論文,國立成功大學資源工程學系,臺南,(1995)。
    72.陳榮華,「破裂安山岩體放射性核種傳輸之研究」,博士論文,國立成功大學資源工程學系,臺南(2001)。
    73.董志秋,「由同震水文反應估算含水層特性與地質材料性質之研究」,碩士論文,國立成功大學資源工程學系,臺南,(2003)。
    74.鄒龍銀,「蘭嶼貯存場含水層傳輸參數之研究-延散係數及遲滯係數」,碩士論文,國立成功大學礦冶及材料科學研究所,臺南,(1993)。
    75.蔡明謙,「岩體節理痕跡線長度及其空間結構變異性分析之研究-以蘭嶼虎頭坡地區安山岩結理面為例」,碩士論文,國立成功大學資源工程學系,臺南,(1995)。
    76.鄭克聲、許正芳,「台灣地區降雨之碎形分析」,台灣水利季刊,第45卷,第二期,38-46頁,(1997)。
    77.錢滄海,「單一河道之碎形維度」,中華水土保持學報,第25卷,第一期,53-60頁,(1994)。
    78.洪浩原,「破裂岩體隧道滲流之研究」,碩士論文,國立成功大學資源工程學系,臺南,(1999)。
    79.林允斌、陳主惠、黃柏壽、譚義績,「集集大地震後水井水位變化模擬及分析」,台灣水利季刊,第49卷,第3期,30-41頁,(2001)。
    80.黃文彥「安山岩含水層中地下水示蹤試驗、延散係數及遲滯細數之研究」,碩士論文,國立成功大學礦冶及材料科學工程學系,臺南,(1992)。

    下載圖示 校內:立即公開
    校外:2004-06-21公開
    QR CODE