簡易檢索 / 詳目顯示

研究生: 郭宗航
Kuo, Tsung-Hang
論文名稱: 登革熱住院病人臨床表徵及實驗數據在預測疾病預後之評估
Evaluation of the clinical and laboratory characteristics to predict the prognosis of inpatient with dengue virus infection
指導教授: 林聖翔
Lin, Sheng-Hsiang
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所碩士在職專班
Institute of Clinical Medicine(on the job class)
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 53
中文關鍵詞: 登革熱住院病人成人死亡發燒時間低血壓
外文關鍵詞: Dengue, Hospitalized patient, Adult, Fatality, Febrile duration, Hypotension
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景

    2015年台灣經歷近十年來最嚴重的登革熱大流行,造成43784人確診及5.15%死亡率,其中台南確診22777人。登革出血熱接受適當的治療後死亡率可降至0.2%以下,因此病人在登革熱的哪個時期確診對於其是否會進展至嚴重登革熱甚至死亡是非常重要的,早期偵測這些造成疾病惡化的因子並加以處理是必須的,此研究的目的是去識別病人發燒的特徵及臨床的表現是否可預測疾病的嚴重程度,是否會造成之後嚴重的血小板低下甚至死亡。

    方法

    此研究納入289個確診登革熱的住院病人,其中22人死亡及267人存活。首先,我們追蹤病人十二天並紀錄其血小板的變化,然後利用群組化軌跡模式把血小板數值隨著時間變化的情形分成二天類,藉此研究血小板低下的嚴重程度與在急診臨床及實驗室數據之間的關係,接著,我們比較有無死亡兩組病人的急診臨床及實驗室數據,再利用多變數邏輯斯迴歸分析找出有意義的風險因子,然後找出其ROC 曲線,最後利用諾模圖(nomogram)來建立一個風險計分系統,期望之後可利用在臨床.

    結果

    在289人裡,162人被分在中度及嚴重血小板低下的軌跡,另外127人被分在輕度血小板的軌跡。中度及嚴重血小板低下的病人年紀較高,有較高比例有冠心病病史也有較高比例在急診有接受呼吸器治療,經過多變數邏輯斯迴歸分析並調整年齡,有無呼吸器治療及有無冠心病病史這些因子後,年紀超過85歲的病人比起小於85歲的病人的勝算比是8.62,急診有無接受呼吸器治療的勝算比是11,有無冠心病病史的勝算比是2.34.,中度及嚴重血小板低下的病人其ROC曲線底下的面積是0.75。
    死亡組的病人有較高的比例年紀較高且有多的慢性疾病,像慢性腎病及冠心病, 經過多變數邏輯斯迴歸分析,年紀超過85歲的病人比起小於85歲的病人的勝算比是29.2,發燒離到急診時間小於4天的勝算比是4.71,在急診有無低血壓狀況的勝算比是7.81,有無心衰竭病史的勝算比是11.85,死亡的病人其ROC曲線底下的面積是0.88,以上這四個因子被做成諾模圖看是否可應用在臨床。

    結論

    根據研究的結果,病人的年紀、發燒的狀況、在急診血壓的變化、血小板的數量及有無心衰竭的病史皆和病人的預後息息相關,綜合以上的臨床發現也許可以幫助醫師預測病人之後疾病的嚴重程度。

    Background

    In 2015, Taiwan experienced the worst dengue virus (DENV) outbreak in 10 years, with a high DF death rate (5.15%) and 43,784 notified cases, of which 22,777 (52%) occurred in Tainan. With careful treatment, the fatality rate of DSS can be reduced to<0.2%. Therefore, the stage of the disease during which a patient is diagnosed is critical in determining the accuracy with which physicians can predict the possibility of progression to SD and death. Early identification of risk factors associated with disease progression from mild to severe dengue and death is essential in determining subsequent management. The purpose of this study was to identify febrile characteristics and clinical presentations that can be used as predictors of thrombocytopenia and fatality in hospitalized adult patients with DENV infections.

    Methods

    This study examined 289 adult hospitalized patients with laboratory-confirmed DENV infections, of which 22 were fatal and 267 were non-fatal. First, we observed each patient for 12 days and computed the daily platelet counts. The daily platelet counts were incorporated into a group-based trajectory model (GBTM) to provide distinct patterns of thrombocytopenia. Using group-based trajectory modeling, the patients were categorized into groups based on their severity of thrombocytopenia. Then, we examine the relationship between thrombocytopenia and clinical and laboratory characteristics at the time of ED admission. Second. A comparison of the clinical and laboratory characteristics was retrospectively conducted of the deceased and surviving individuals. Next, multivariable logistic regression analysis and receiver operating characteristic (ROC) curve were performed to identify potential predictors of fatality and thrombocytopenia. Finally, the final logistic regression model was converted to a nomogram for ease of use in clinical practice.

    Results

    Among 289 patients, 162 patients were classified into moderate to severe thrombocytopenia trajectory and 127 patients were mild thrombocytopenia trajectory. Compared with patients with mild thrombocytopenia trajectory, patients with moderate to severe thrombocytopenia trajectory have higher risk to require ventilator support during ED admission and have more ischemic heart disease. In the multivariable logistic analysis, age>85 vs. age<55 [odds ratio (OR), 8.62; 95% confidence interval (CI), 2.12–35.0], mechanical ventilation (OR, 11.0; 95% CI, 1.42–85.2), and comorbidity with ischemic heart disease (OR, 2.34; 95% CI, 1.05–5.23) were independent predictive factors for moderate to severe thrombocytopenia after adjusting for age, mechanical ventilation and comorbidity with ischemic disease. The ROC curve analysis indicated that the final prognostic model yielded an area under the curve (AUC) of 0.75 (95% CI, 0.69–0.81) for moderate to severe thrombocytopenia.
    Fatal patients exhibited significantly more medical comorbidities, particularly renal and cardiac disorders, and they were, in general, older than control individuals (p<0.0001). The results of multivariable logistic regression analysis showed that age>85 vs. age<55 (odds ratio (OR), 29.2; 95% confidence interval (CI), 1.30–653.3), febrile duration of less than four days before arriving in the emergency department (ED) (odds ratio (OR), 4.71; 95% confidence interval (CI), 1.24–17.92), episode of hypotension in the ED (OR, 7.81; 95% CI, 2.56–23.86) and comorbidity with congestive heart failure (OR, 11.85; 95% CI, 2.44–57.55) were all significantly associated with inpatient fatality due to DENV infection. The ROC curve analysis indicated that the final prognostic model yielded an area under the curve (AUC) of 0.88 for fatality. Nomogram was developed to predict fatality due to dengue virus infection using the 5 independent parameters. The nomogram is used by totaling the points assigned on the scales for each independent parameter.

    Conclusion

    According to our results, age, febrile pattern, episode of hypotension in the ED, platelet count and comorbidity with congestive heart failure are related to patient’s outcome. The aforementioned clinical findings may help clinicians predict fatality among adult inpatients with DENV infection.

    TABLE OF CONTENTS 中文摘要 I ABSTRACT III TABLE OF CONTENTS VII LIST OF TABLES IX LIST OF FIGURES XI ABBREVIATION XII CHAPTER 1. INTRODUCTION 1 1.1 Background of dengue virus infection 1 1.2 Clinical manifestations of dengue virus infection 2 1.3 The effect of thrombocytopenia in dengue patient 2 1.4 Clinical and laboratory characteristics for fatality of dengue virus infection 3 1.5 The effect of secondary dengue virus infection in dengue patient 4 1.6 Hypothesis, Specific aims and significance 5 CHAPTER 2. METHODS AND MATERIALS 6 2.1 Participants 6 2.2 Data collection 6 2.3 Disease severity 7 2.4 Statistical analysis 7 CHAPTER 3. RESULTS 10 3.1 Demographic, clinical and laboratory variables between the trajectories of the two groups of dengue patients 10 3.2 ROC curve and discriminate analysis of demographic, clinical and laboratory variables between the two trajectories of thrombocytopenia change in dengue patients 11 3.3 Demographic, clinical and laboratory variables associated with thrombocytopenia in dengue inpatient using generalized estimating equation models 12 3.4 Demographic, clinical and laboratory variables of dengue patients with fatality and without fatality 12 3.5 ROC curve and discriminate analysis of demographic, clinical and laboratory variables associated with fatality in dengue patients 13 3.6 Cox regression analysis of demographic, clinical and laboratory variables associated with fatality in dengue patients 15 3.7 Comparisons of death and thrombocytopenia between prior dengue infection and non-prior dengue infection 15 3.8 Practical tool for physicians to predict fatality due to dengue virus infection 16 CHAPTER 4. DISCUSSION 17 4.1 Contributions 17 4.2 Risk factors of thrombocytopenia in patients with dengue virus infection 17 4.3 Risk factors of fatality in patients with dengue virus infection 18 4.4 Risk factors of fatality in patients with dengue virus infection 20 4.5 Practical tool in predicting fatality due to dengue virus infection 20 4.6 Strenghts and limitations 21 CHAPTER 5. CONCLUSION AND SUGGESTION 23 5.1 Conclusion 23 5.2 Suggestion 23 CHAPTER 5. REFERENCES 25

    REFERENCES

    1 Brady, O. J. et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 6, e1760, doi:10.1371/journal.pntd.0001760 (2012).
    2 Jentes, E. S. et al. Evidence-based risk assessment and communication: a new global dengue-risk map for travellers and clinicians. J Travel Med 23, doi:10.1093/jtm/taw062 (2016).
    3 Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504-507, doi:10.1038/nature12060 (2013).
    4 Stanaway, J. D. et al. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis 16, 712-723, doi:10.1016/S1473-3099(16)00026-8 (2016).
    5 Wilder-Smith, A. et al. Epidemic arboviral diseases: priorities for research and public health. Lancet Infect Dis 17, e101-e106, doi:10.1016/S1473-3099(16)30518-7 (2017).
    6 Ferguson, R. W., Henderson, S. J., Lee, E. A. & Jung, P. Dengue in Peace Corps Volunteers, 2000-14. J Travel Med 23, doi:10.1093/jtm/taw010 (2016).
    7 Lalani, T. et al. A comparison of compliance rates with anti-vectorial protective measures during travel to regions with dengue or chikungunya activity, and regions endemic for Plasmodium falciparum malaria. J Travel Med 23, doi:10.1093/jtm/taw043 (2016).
    8 Wichmann, O. et al. Risk factors and clinical features associated with severe dengue infection in adults and children during the 2001 epidemic in Chonburi, Thailand. Trop Med Int Health 9, 1022-1029, doi:10.1111/j.1365-3156.2004.01295.x (2004).
    9 Lye, D. C., Lee, V. J., Sun, Y. & Leo, Y. S. The benign nature of acute dengue infection in hospitalized older adults in Singapore. Int J Infect Dis 14, e410-413, doi:10.1016/j.ijid.2009.06.026 (2010).
    10 Chaudhary, R. et al. Transfusion support to Dengue patients in a hospital based blood transfusion service in north India. Transfus Apher Sci 35, 239-244, doi:10.1016/j.transci.2006.08.007 (2006).
    11 Kamil, S. M., Mohamad, N. H., Narazah, M. Y. & Khan, F. A. Dengue haemorrhagic fever with unusual prolonged thrombocytopaenia. Singapore Med J 47, 332-334 (2006).
    12 Ali, N., Usman, M., Syed, N. & Khurshid, M. Haemorrhagic manifestations and utility of haematological parameters in dengue fever: a tertiary care centre experience at Karachi. Scand J Infect Dis 39, 1025-1028, doi:10.1080/00365540701411492 (2007).
    13 Shivbalan, S., Anandnathan, K., Balasubramanian, S., Datta, M. & Amalraj, E. Predictors of spontaneous bleeding in Dengue. Indian J Pediatr 71, 33-36, doi:10.1007/bf02725653 (2004).
    14 Makroo, R. N., Raina, V., Kumar, P. & Kanth, R. K. Role of platelet transfusion in the management of dengue patients in a tertiary care hospital. Asian J Transfus Sci 1, 4-7, doi:10.4103/0973-6247.28065 (2007).
    15 Suharti, C. et al. The role of cytokines in activation of coagulation and fibrinolysis in dengue shock syndrome. Thromb Haemost 87, 42-46 (2002).
    16 Wills, B. A. et al. Comparison of three fluid solutions for resuscitation in dengue shock syndrome. N Engl J Med 353, 877-889, doi:10.1056/NEJMoa044057 (2005).
    17 Ong, A., Sandar, M., Chen, M. I. & Sin, L. Y. Fatal dengue hemorrhagic fever in adults during a dengue epidemic in Singapore. Int J Infect Dis 11, 263-267, doi:10.1016/j.ijid.2006.02.012 (2007).
    18 Navarrete-Espinosa, J., Gomez-Dantes, H., Celis-Quintal, J. G. & Vazquez-Martinez, J. L. Clinical profile of dengue hemorrhagic fever cases in Mexico. Salud Publica Mex 47, 193-200 (2005).
    19 Lee, I. K., Liu, J. W. & Yang, K. D. Fatal dengue hemorrhagic fever in adults: emphasizing the evolutionary pre-fatal clinical and laboratory manifestations. PLoS Negl Trop Dis 6, e1532, doi:10.1371/journal.pntd.0001532 (2012).
    20 Rigau-Perez, J. G. & Laufer, M. K. Dengue-related deaths in Puerto Rico, 1992-1996: diagnosis and clinical alarm signals. Clin Infect Dis 42, 1241-1246, doi:10.1086/501355 (2006).
    21 Garcia-Rivera, E. J. & Rigau-Perez, J. G. Dengue severity in the elderly in Puerto Rico. Rev Panam Salud Publica 13, 362-368, doi:10.1590/s1020-49892003000500004 (2003).
    22 Guzman, M. G. et al. Enhanced severity of secondary dengue-2 infections: death rates in 1981 and 1997 Cuban outbreaks. Rev Panam Salud Publica 11, 223-227, doi:10.1590/s1020-49892002000400003 (2002).
    23 Cavalcanti, L. P. et al. Clinical and epidemiological characterization of dengue hemorrhagic fever cases in northeastern, Brazil. Rev Soc Bras Med Trop 43, 355-358 (2010).
    24 Juneja, D. et al. Clinical profile, intensive care unit course, and outcome of patients admitted in intensive care unit with dengue. J Crit Care 26, 449-452, doi:10.1016/j.jcrc.2011.05.007 (2011).
    25 Thein, T. L. et al. Risk factors for fatality among confirmed adult dengue inpatients in Singapore: a matched case-control study. PLoS One 8, e81060, doi:10.1371/journal.pone.0081060 (2013).
    26 Almas, A., Parkash, O. & Akhter, J. Clinical factors associated with mortality in dengue infection at a tertiary care center. Southeast Asian J Trop Med Public Health 41, 333-340 (2010).
    27 Lisova, O., Belkadi, L. & Bedouelle, H. Direct and indirect interactions in the recognition between a cross-neutralizing antibody and the four serotypes of dengue virus. J Mol Recognit 27, 205-214, doi:10.1002/jmr.2352 (2014).
    28 Soo, K. M., Khalid, B., Ching, S. M. & Chee, H. Y. Meta-Analysis of Dengue Severity during Infection by Different Dengue Virus Serotypes in Primary and Secondary Infections. PLoS One 11, e0154760, doi:10.1371/journal.pone.0154760 (2016).
    29 Moi, M. L. et al. Demonstration of marmosets (Callithrix jacchus) as a non-human primate model for secondary dengue virus infection: high levels of viraemia and serotype cross-reactive antibody responses consistent with secondary infection of humans. J Gen Virol 95, 591-600, doi:10.1099/vir.0.060384-0 (2014).
    30 Shu, P. Y. et al. Development of group- and serotype-specific one-step SYBR green I-based real-time reverse transcription-PCR assay for dengue virus. J Clin Microbiol 41, 2408-2416 (2003).
    31 Shu, P. Y. et al. Application of the dengue virus NS1 antigen rapid test for on-site detection of imported dengue cases at airports. Clin Vaccine Immunol 16, 589-591, doi:10.1128/CVI.00475-08 (2009).
    32 Lee, I. K. et al. Development of a Simple Clinical Risk Score for Early Prediction of Severe Dengue in Adult Patients. PLoS One 11, e0154772, doi:10.1371/journal.pone.0154772 (2016).
    33 Mehta, R. L. et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11, R31, doi:10.1186/cc5713 (2007).
    34 Leiby, B. E., Sammel, M. D., Ten Have, T. R. & Lynch, K. G. Identification of Multivariate Responders/Non-Responders Using Bayesian Growth Curve Latent Class Models. J R Stat Soc Ser C Appl Stat 58, 505-524, doi:10.1111/j.1467-9876.2009.00663.x (2009).
    35 Nagin, D. S. & Tremblay, R. E. Analyzing developmental trajectories of distinct but related behaviors: a group-based method. Psychol Methods 6, 18-34, doi:10.1037/1082-989x.6.1.18 (2001).
    36 He, T. et al. Estimating dynamic lung images from high-dimension chest surface motion using 4D statistical model. Med Image Comput Comput Assist Interv 17, 138-145, doi:10.1007/978-3-319-10470-6_18 (2014).
    37 Heinze, G. & Schemper, M. A solution to the problem of separation in logistic regression. Stat Med 21, 2409-2419, doi:10.1002/sim.1047 (2002).
    38 Faraggi, D. & Reiser, B. Estimation of the area under the ROC curve. Stat Med 21, 3093-3106, doi:10.1002/sim.1228 (2002).
    39 Horn, J. F. et al. Differential automatic diagnosis between Alzheimer's disease and frontotemporal dementia based on perfusion SPECT images. Artif Intell Med 47, 147-158, doi:10.1016/j.artmed.2009.05.001 (2009).
    40 Rudnick, A., Tan, E. E., Lucas, J. K. & Omar, M. B. Mosquito-Borne Haemorrhagic Fever in Malaya. Br Med J 1, 1269-1272, doi:10.1136/bmj.1.5445.1269 (1965).
    41 Lam, P. K. et al. The value of daily platelet counts for predicting dengue shock syndrome: Results from a prospective observational study of 2301 Vietnamese children with dengue. PLoS Negl Trop Dis 11, e0005498, doi:10.1371/journal.pntd.0005498 (2017).
    42 Stephan, F. et al. Thrombocytopenia in a surgical ICU. Chest 115, 1363-1370, doi:10.1378/chest.115.5.1363 (1999).
    43 Bonfiglio, M. F. et al. Thrombocytopenia in intensive care patients: a comprehensive analysis of risk factors in 314 patients. Ann Pharmacother 29, 835-842, doi:10.1177/106002809502900901 (1995).
    44 Shalansky, S. J., Verma, A. K., Levine, M., Spinelli, J. J. & Dodek, P. M. Risk markers for thrombocytopenia in critically ill patients: a prospective analysis. Pharmacotherapy 22, 803-813, doi:10.1592/phco.22.11.803.33634 (2002).
    45 Thomas, L. et al. Predictors of severe manifestations in a cohort of adult dengue patients. J Clin Virol 48, 96-99, doi:10.1016/j.jcv.2010.03.008 (2010).
    46 Chen, C. Y. et al. Diabetes mellitus increases severity of thrombocytopenia in dengue-infected patients. Int J Mol Sci 16, 3820-3830, doi:10.3390/ijms16023820 (2015).
    47 Dhanoa, A. et al. Risk factors and clinical outcome of profound thrombocytopenia in adult patients with DENV infections. Platelets 28, 724-727, doi:10.1080/09537104.2017.1293802 (2017).
    48 Hsieh, C. C. et al. A Cohort Study of Adult Patients with Severe Dengue in Taiwanese Intensive Care Units: The Elderly and APTT Prolongation Matter for Prognosis. PLoS Negl Trop Dis 11, e0005270, doi:10.1371/journal.pntd.0005270 (2017).
    49 Druml, W. et al. Acute renal failure in the elderly 1975-1990. Clin Nephrol 41, 342-349 (1994).
    50 Kuo, M. C. et al. Difficulty in diagnosis and treatment of dengue hemorrhagic fever in patients with chronic renal failure: report of three cases of mortality. Am J Trop Med Hyg 76, 752-756 (2007).
    51 Leo, Y. S. et al. Confirmed adult dengue deaths in Singapore: 5-year multi-center retrospective study. BMC Infect Dis 11, 123, doi:10.1186/1471-2334-11-123 (2011).
    52 Lahiri, M., Fisher, D. & Tambyah, P. A. Dengue mortality: reassessing the risks in transition countries. Trans R Soc Trop Med Hyg 102, 1011-1016, doi:10.1016/j.trstmh.2008.06.005 (2008).
    53 Chan, K. P., Lau, G. K., Doraisingham, S. & Chan, Y. C. Adult dengue deaths in Singapore. Clin Diagn Virol 4, 213-222, doi:10.1016/0928-0197(95)00004-r (1995).
    54 Huang, C. C., Hsu, C. C., Guo, H. R., Su, S. B. & Lin, H. J. Dengue fever mortality score: A novel decision rule to predict death from dengue fever. J Infect 75, 532-540, doi:10.1016/j.jinf.2017.09.014 (2017).
    55 Jain, S. et al. Predictors of Dengue-Related Mortality and Disease Severity in a Tertiary Care Center in North India. Open Forum Infect Dis 4, ofx056, doi:10.1093/ofid/ofx056 (2017).
    56 Lee, I. K. et al. Prognostic Factors in Adult Patients with Dengue: Developing Risk Scoring Models and Emphasizing Factors Associated with Death </=7 Days after Illness Onset and </=3 Days after Presentation. J Clin Med 7, doi:10.3390/jcm7110396 (2018).
    57 Juffrie, M. et al. Inflammatory mediators in dengue virus infection in children: interleukin-8 and its relationship to neutrophil degranulation. Infect Immun 68, 702-707, doi:10.1128/iai.68.2.702-707.2000 (2000).
    58 Green, S. et al. Elevated plasma interleukin-10 levels in acute dengue correlate with disease severity. J Med Virol 59, 329-334 (1999).
    59 Mustafa, A. S., Elbishbishi, E. A., Agarwal, R. & Chaturvedi, U. C. Elevated levels of interleukin-13 and IL-18 in patients with dengue hemorrhagic fever. FEMS Immunol Med Microbiol 30, 229-233, doi:10.1111/j.1574-695X.2001.tb01575.x (2001).

    下載圖示 校內:2025-07-29公開
    校外:2025-07-29公開
    QR CODE