| 研究生: |
陳正宏 Chen, Cheng-Hung |
|---|---|
| 論文名稱: |
氧化銅/氧化鋅奈米粉末-薄膜之顯微結構與光電磁特性研究 The microstructure and optoelectro-magnetic properties of CuO/ZnO (CuZnO) nanoparticles (thin film) systems |
| 指導教授: |
洪飛義
Hung, Fei-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 氧化鋅 、氧化銅 、熱擴散 、奈米線 、摻雜 |
| 外文關鍵詞: | ZnO, CuO, thermal diffusion, nanowires, dopant |
| 相關次數: | 點閱:102 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化鋅系統具有優異光電特性與應用前景,借助元素摻雜和熱處理結晶可提升在磁性方面的應用廣度。本研究除檢討CuZnO系粉末特性外,亦評估CuZnO薄膜熱擴散機制和光電磁性質關係,進而釐清ZnO wires/CuZnO結構應用機理。實驗結果顯示,透過水溶液法製備出不同比例CuxZn1-xO (x=0.33,0.5,0.67) 粉末,以500℃為退火溫度,可確認CuZnO粉末 (x=0.67) 易產生氧化亞銅相,將劣化電性及磁性。
實驗中利用磁控濺鍍法製作CuZnO薄膜。由於氧化鋅摻雜銅原子,使載子濃度提升進而鐵磁性增強、電性變佳。因Zn與Cu原子有交互擴散現象,使得氧化鋅拉曼光譜因此藍移。選擇較佳薄膜條件,透過低溫水溶液法在CuZnO薄膜上成長氧化鋅奈米線。由於奈米線出現了較多氧空缺及鋅間隙,使得氧化鋅載子濃度增加,進而改善電性及磁性。經熱處理後之ZnO wires/CuZnO薄膜,膜基地中銅原子擴散至氧化鋅奈米線中,可大幅增進本系統結構之光電磁特性。
There are excellent electro-optical properties and applications in ZnO system. It can enhance the appliance of magnetic properties by element doped and annealing. This research not only discussed the powder characteristic of CuZnO but also evaluated the thermal diffusion principle and optoelectro-magnetic connection in CuZnO thin film. Furthermore, it can clarify the related structure in ZnO wires/CuZnO. Through an aqueous solution method, it produced the CuxZn1-xO powders with different content ratios of CuO and ZnO (CuO: ZnO = 1 : 2, 1 : 1, and 2 : 1) after annealing in 500℃. It was easy to bring in Cu2O phase and deteriorated electrical and magnetic properties.
This work used magnetron sputtering to manufacture the CuZnO thin film. It improved the carrier concentration to make the stronger ferromagnetism and the better electrical property as a result of doping Cu atom in ZnO. Because of the Cu and Zn atoms mutual diffuse phenomenon, this consequence induced blue shift in ZnO raman spectrum.
This research chose the better parameter in thin film and grew with ZnO nanowires on the CuZnO thin film using aqueous solution method in lower temperature. The ZnO nanowires appeared lots of oxygen vacancies and interstitial zincs. It made carrier concentration improving and the better electrical and magnetic properties. After annealing in the ZnO wires/CuZnO thin film, the Cu atoms of matrix diffused into the ZnO nanowires. This consequence made much better in optoelectro-magnetic properties.
[1] B. Karthikeyan, T. Pandiyarajan, and K. Mangaiyarkarasi,“Optical properties of sol-gel synthesized calcium doped ZnO nanostructures”, Spectrochimica Acta A, vol. 82, pp. 97-101, (2011).
[2] H. Qin, Z. Zhang, X. Liu, Y. Zhang, and J. Hu, “Roomtemperature ferromagnetism in CuO sol-gel powders and films”, Journal of Magnetism and Magnetic Materials, vol. 322, no. 14, pp. 1994-1998,( 2010).
[3] C. W. Zou, J. Wang, F. Liang, W. Xie, L. X. Shao, and D. J. Fu, “Large-area aligned CuO nanowires arrays: synthesis, anomalous ferromagnetic and CO gas sensing properties”, Current Applied Physics, vol. 12, pp. 1349-1354, (2012).
[4] J. Wang, N. Du, H. Zhang, J. Yu, and D. Yang, “Large-scale synthesis of SnO2 nanotube arrays as high-performance anode materials of Li-ion batteries”, Journal of Physical Chemistry C, vol. 115, no. 22, pp. 11302-11305, (2011).
[5] H. G. Na, D. S. Kwak, H. W. Kim, and H. W., “Structural,Raman, and photoluminescence properties of double-shelled coaxial nanocables of In2O3 core with ZnO and AZO shells”, Crystal Research and Technology, vol. 47, pp. 79-86, (2012).
[6] L. C. Chen, C. M. Huang, C. S. Gao, G. W. Wang, and M. C. Hsiao, “A comparative study of the effects of In2O3 and SnO2 modification on the photocatalytic activity and characteristics of TiO2”, Chemical Engineering Journal, vol. 175, pp. 49-55, (2011).
[7] J. P. Li, F. Q. Sun, K. Y. Gu, T. X. Wu, W. Zhai, W. S. Li, S. F. Huang, “Preparation of spindly CuO micro-particles for photodegradation of dye pollutants under a halogen tungsten lamp”, Applied Catalysis A, vol. 406, pp. 51-58, (2011).
[8] R. Motoyoshi, T. Oku, H. Kidowaki, A. Suzuki, K. Kikuchi, S. Kikuchi, S. Kikuchi,and B. Jeyadevan, “Structure and photovoltaic activity of cupric oxide-based thin film solar cells”, Journal of the Ceramic Society of Japan, vol. 118, no. 1383, pp. 1021-1023, (2010).
[9] H. T. Hsueh, S. J. Chang, W. Y. Weng, C. L. Hsu, T. J. Hsueh, F. Y. Hung, S. L. Wu, B. T. Dai, “Fabrication and characterization of coaxial p-copper oxide/n-ZnO nanowire photodiodes”, IEEE Transactions on Nanotechnology, vol. 11, pp. 127-133, (2012).
[10] H. T. Hsueh, T. J. Hsueh, S. J. Chang, F. Y. Hung, T. Y. Tsai, W. Y. Weng, C. L. Hsu, B. T. Dai, “CuO nanowirebased humidity sensors prepared on glass substrate”, Sensors and Actuators B, vol. 156, no. 2, pp. 906-911,( 2011).
[11] J. X. Wang, X. W. Sun, Y. Yang, K. K. Kyaw, X. Y. Huang, J. Z. Yin, J. Wei, H. V. Demir, “Free-standing ZnO - CuO composite nanowire array films and their gas sensing properties”, Nanotechnology, vol. 22, no. 32, Article ID 325704, (2011).
[12] C. S. Dandeneau, Y. H. Jeon, C. T. Shelton, T. K. Plant, D. P. Cann, and B. J. Gibbons, “Thin film chemical sensors based on p-CuO/n-ZnO heterocontacts”, Thin Solid Films, vol. 517, no. 15, pp. 4448-4454, (2009).
[13] T. Ghosh, M. Dutta, S. Mridha, and D. Basak, “Effect of Cu doping in the structural, electrical, optical, and optoelectronic properties of sol-gel ZnO thin films”, Journal of the Electrochemical Society, vol. 156, no. 4, pp. 285-289, (2009).
[14] H. Liu, J. Yang, Z. Hua, Y. Zhang, L. Yang, L. Xiao, Z. Xie, “The structure and magnetic properties of Cu-doped ZnO prepared by sol-gel method”, Applied Surface Science, vol. 256, no. 13, pp. 4162-4165, (2010).
[15] S. Y. Zhuo, X. C. Liu, Z. Xiong, J. H. Yang, and E. W. Shi, “Defects enhanced ferromagnetism in Cu-doped ZnO thin films”, Solid State Communications, vol. 152, pp. 257-260, (2012).
[16] F. Marabelli, G. B. Parravicini, F. Salghetti-Drioli, “Optical gap of CuO”, Phys Rev B, vol. 52, pp. 1433-1436, (1995).
[17] M. A. Rafea, N. Roushdy, “Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique”, Journal of Physics D: Applied Physics, vol. 42, Article ID 015413, (2009).
[18] F. P. Koffyberg, F. A. Benko, “A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO”, J Appl Phys, vol. 53, pp. 1173-1177, (1982).
[19] J. B. Forsyth, S. Hull, “The effect of hydrostatic pressure on the ambient temperature structure of CuO”, Journal of Physics: Condensed Matter, vol. 3, pp. 5257, (1991).
[20] V. A. Coleman, C. Jagadish, “Zinc Oxide Bulk, Thin Films and Nanostructures”, Elsevier Science Ltd, University of Florida, U.S.A., pp. 1-20, (2006).
[21] Y. Igasaki and H. Saito, “The effects of zinc diffusion on the electrical and optical properties of ZnO:Al films prepared by RF reactive sputtering”, Thin Solid Films, vol.199, pp. 223-230, (1991).
[22] T. Komaru, S. Shimizu, M. Kanbe, Y. Maeda, T. Kamiya, C. M. Fortmann and I. Shimizu, ”Optimization of transparent conductive oxide for improved resistance to reactive and/or high temperature optoelectronic device processing”, Appl. Phys., vol. 38, pp. 5796-5804, (1999).
[23] M. Abdullah, I. W. Lenggoro, K. Okuyama, “In situ synthesis of polymer nanocomposite electrolytes emitting a high luminescence with a tunable wavelength”, J. Phys. Chem. B, vol. 107, pp. 1957-1961, (2003).
[24] J. Wu, C. Xie, Z. Bai, B. Zhu, K. Huang, R. Wu, “Preparation of ZnO-glass varistor from tetrapod ZnO nanopowders”, Materials Science and Engineering, B95, pp. 157-161, (2002).
[25] N. Daneshvar, D. Salari, A.R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2”, Joural of Photochemistry and photobiology A: Chemistry, vol. 162, pp. 317-322, (2004).
[26] D. Mondelaers, G. Vanhoyland, H. Van den Rul, J. D’Haen, M. K. Van Bael, J. Mullens, L. C. Van Poucke, “Synthesis of ZnO nanopowder via an aqueous acetate-citrate gelation method”, Materials Research Bulletin, vol. 37, pp. 901-914, (2002).
[27] D. W. Bahnemann, C. Kormann, M. R. Hoffmann, “Preparation and characterization of quantum size zinc oxide: a Detailed Spectroscopic Study”, J. Phys. Chem., vol. 91, pp. 3789-3798, (1987).
[28] C. Feldmann, “Polyol-Mediated synthesis of nanoscale functional materials”, Advanced Functional Materials, vol. 13, pp. 101-107, (2003).
[29] S. M. Rossnagel,“Handbook of Plasma Processing Technology”, Noyes Publications, Park Ridge, New Jersey, U.S.A., pp. 341-343, (1989).
[30] D. M. Mattox, “Handbook of Physical Vapor Deposition (PVD) Processing”, Noyes Publications, Westwood, New Jersey, pp. 330-333, (1998).
[31] R. F. Bunshah, “Deposition Technologies for Films and Coatings”, Noyes Publications, Park Ridge, New Jersey, U. S. A., (1982).
[32] L. Vayssiers,“Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Adv. Mater., vol. 15, pp. 464, (2003).
[33] A. L. Patterson, “The Scherrer formula for X-ray particle size determination”, Physical Review, vol. 56, pp. 978-982, (1939)
[34] F. M. Smits, “Measurement of Sheet Resisitivities with the Four-Point Probe” , Bell Syst. Tech. J., vol.37, pp. 711-718, (1958).
[35] L. J. Van der Pauw, “A Method of Measuring Specific Resistivity and Hall Effect of Discs of Arbitrary Shape” , Philips Research Reports 12.1, pp. 1-9, (1958).
[36] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, “Surface-enhanced Raman Scattering and Biophysics”, J. Phys.: Condens. Matter, vol. 14, pp. 597-624, (2002).
[37] C. V. Gulijk, K. M. Lathouder, R. Haswell, “Characterizing herring bone structures in carbon nanofibers using selected area electron diffraction and dark field transmission electron microscopy”, Carbon, vol.44, pp. 2950-2956, (2006).
[38] L. A. Bendersky, and F. W. Gayle, “Electron diffraction using transmission electron microscopy”, J. Res. Natl. Inst. Stand. Technol., vol. 106, pp. 997-1012, (2001).
[39] J. V. Bellini, M. R.Morelli, R. H. G. A. Kiminami, “Ceramic system based on ZnO ⋅ CuO obtained by freeze-drying”, Materials Letters, vol. 57, pp. 3775-3778, (2003).
[40] S. Choopun, N. Hongsith and E. Wongrat “Metal-Oxide Nanowires by Thermal Oxidation Reaction Technique”, InTech, Europe, (2010)
[41] O. Perales-Perez, A. Parra-Palomino, R. Singhal, P. M. Voyles, Y. Zhu, W. Jia, M. S. Tomar, “Evidence of ferromagnetism in Zn1-xMxO (M = Ni,Cu) nanocrystals for spintronics”, Nanotechnology, vol. 18, Article ID 315606, (2007).
[42] R. Al-Gaashani, S. Radiman, N. Tabet, A. R. Daud, “Synthesis and optical properties of CuO nanostructures obtained via a novel thermal decomposition method”, Journal of Alloys and Compounds, vol. 509, pp. 8761-8769, (2011).
[43] L. Li, J. G. Lei, T. H. Ji, “Facile fabrication of p-n heterojunctions for Cu2O submicroparticles deposited on anatase TiO2 nanobelts”, Materials Research Bulletin, vol. 46, pp. 2084-2089, (2011).
[44] H. Kim, B. K. Lee, K. S. An, S. Ju, “Direct growth of oxide nanowires on CuOx thin film”, Nanotechnology, vol. 23, Article ID 830474, (2012)
[45] Scherrer, P. Röntgendiffraktion, Halbwertsbreiten, Goett. Nachr., No. 2, pp. 98-100, (1918).
[46] H. A. Weakliem, “Optical spectra of Ni2+, Co2+, and Cu2+ in tetrahedral sites in crystals”, J. Chem. Phys., vol. 36, pp. 2117, (1962).
[47] T. R. N. Kutty, N. Raghu, “Varistors based on polycrystalline ZnO:Cu”, Appl. Phys. Lett., vol. 54, pp. 1796-1798, (1989).
[48] N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, G. Cantwell, “Defects in ZnO”, Appl. Phys. Lett., vol. 81, pp. 622, (2002).
[49] X. Chen, Z. Zhou, K.Wang, X. Fan, S. Hu, Y. Wang, Y. Huang, “Ferromagnetism in Fe-doped tetra-needle like ZnO whiskers”, Materials Research Bulletin, vol. 44, pp. 799-802, (2009).
[50] Z. Chen, L. Gao, “A facile route to ZnO nanorod arrays using wet chemical method”, Journal of Crystal Growth, vol. 293, pp. 522-527, (2006).
[51] K. Laurent, D. P. Yu, S. Tusseau-Nenez, Y. Leprince-Wang, “Thermal annealing effect on optical properties of electrodeposited ZnO thin films”, Journal of Physics D: Applied Physics, vol. 41, Article ID 195410, (2008).