| 研究生: |
鄭羽淳 Jheng, Yu-Chun |
|---|---|
| 論文名稱: |
伏流水對於附著藻豐富度之研究 The study of hyporheic water to periphyton abundances |
| 指導教授: |
孫建平
Suen, Jian-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系碩士在職專班 Department of Hydraulic & Ocean Engineering (on the job class) |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 五溝水 、淡水大型藻 、伏流水 、微測壓管 、垂直水力梯度 |
| 外文關鍵詞: | Wu Gou Shui, Macroalgae, Hyporheic water, Minipiezometers, Vertical hydraulic gradient |
| 相關次數: | 點閱:73 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以大型藻類為對象,於五溝水樣點進行藻類採集、水文環境因子收集及水質分析,透過統計分析釐清上湧及下滲區水文環境因子之差異,並探討伏流水其上湧及下滲特性對大型藻類分布是否具有顯著影響。
研究於2020年1月到4月於五溝水當地挑選四個樣點,分別為一號水門、廣泉堂、社區公園及屋背溝進行藻類採樣及水質分析,藻類研究以穿越線調查藻類覆蓋度,並採樣以鏡檢方式分辨出藻種,最終以藻類覆蓋率及藻屬百分比計算得出藻屬豐富度。五溝水樣點上湧及下滲區參考前人研究,於樣點進行微測壓管打管作業,判定上湧及下滲結果並記錄,隨後進一步測量垂直水力梯度,最後與藻種及豐富度進行比較分析,了解其大型藻種類及豐富度是否與上湧及下滲區之水文環境因子具有顯著影響。
藻類採樣結果發現五溝水主要大型藻類為水綿屬(Spirogyra sp.) 與板藻屬(Mougeotia sp.),皆屬於綠藻門。依垂直水力梯度分級結果與藻類分布比例進行分析,檢定結果發現水溫、pH、葉綠素a及水綿屬豐富度有顯著差異,在導電度、溶氧、流速、水深、板藻屬豐富度無顯著性差異。依穿越線調查大型藻覆蓋率與藻比例進行藻屬豐富度計算,分級結果顯示水綿屬高豐富度多在廣泉堂,而板藻屬高豐富度多分布在社區公園。依垂直水力梯度比較藻屬豐富度分析,板藻屬低豐富度檢定結果僅溶氧有顯著差異,其餘環境因子無顯著差異。
The study tried to figure out how the upwelling and downwelling of hyporheic water affects periphyton. Sampling sites were examined by collecting periphyton, surveying environmental factors, and investigating hyporheic water in the Wu Gou Shui. Data was from January to April 2020. Four sections, No. 1 Water Gate, Guang Quan Hall, Community Park and Wu Bei Gou, were sampled. The macroalgae coverage were investigated by transect lines in the river, then they were observed under the microscope to distinguish the algae species and calculate abundances. The vertical hydraulic gradient were surveyed by the mini piezometers. The water quality data in hyporheic zone were recorded (pH, conductive, dissolved oxygen, and water temperature). The results showed that the main macroalgae in Wu Gou Shui were Spirogyra sp. and Mougeotia sp. The vertical hydraulic gradient and the macroalgae collected sites were different with water quality (water temperature, pH, Chlorophyll a, and Spirogyra sp. abundances). The macroalgae abundances showed that the high abundance of Spirogyra sp.was mostly in Guang Quan Hall, and Mougeotia sp. was mostly distributed in the community park. The vertical hydraulic gradient and the macroalgae abundances were only different with dissolved oxygen, and no significant differences in other environmental factors.
吳俊宗(2014),「藻類與環境」,科學月刊,第57-1期。
林馳源(2014),「伏流水對地表逕流水質與魚類影響之研究」,國立成功大學環境工程學系碩士論文。取自https://hdl.handle.net/11296/w4f9g6
施郁庭(1997),「台灣南部河川上游水綿屬與剛毛藻屬之分佈及其生長環境因子探究」,國立成功大學環境工程學系碩士論文。取自https://hdl.handle.net/11296/quura8
郭俊廷(2014),「伏流水與環境因子對底棲型鰕虎產卵之影響─以五溝水湧泉濕地為例」,國立成功大學環境工程學系碩士論文。取自https://hdl.handle.net/11296/h539gz
陳孟漢(2020) ,「乾季渠道型河床垂直通量估算」,國立成功大學環境工程學系碩士論文。
黃淑芳(1989),認識藻類,臺灣省立博物館出版。
陳紫昀(2012) ,「台灣南部地區水綿屬分類之研究」,崑山科技大學環境工程學系碩士論文。取自https://hdl.handle.net/11296/97v7y5
馮豐隆、曾晴賢、甘宸宜(2010) ,「台灣溪流地景分類與生物指標之建置
─以南崁溪、客雅溪、中港溪為例」,林業研究季刊,27(3):25~36.2005。
游志弘(2014),「地表逕流與伏流水交換對水質特性相關性之探討」,國立成功大學水利及工程學系碩士論文。取自https://hdl.handle.net/11296/jgn67t
葉柏緯(2014),「伏流水對魚類棲地之影響─以五溝水湧泉濕地為例」,國立成功大學水利及海洋工程學系碩士論文。取自https://hdl.handle.net/11296/24e24e
潘孟鈴(2000),「屏東萬巒開發的研究」,國立成功大學歷史學系碩士論文。取自https://hdl.handle.net/11296/udm5g3
潘敏男(2011),「從文化景觀脈絡研究聚落保存效益-以屏東縣五溝水聚落為例」, 樹德科技大學建築與環境設計研究所碩士論文。取自https://hdl.handle.net/11296/8jwdxy
賴雪瑞(1997),「台灣本土性底棲藻類作為河川水質生物指標之研究」, 國立中興大學植物學系博士論文。
Alley, W. M., R. W. Healy, J. W. LaBaugh and T. E. Reilly (2002), “Flow and storage in groundwater systems”, Science, 296(5575) pp.1985-1990.
Asada, T. and D. H. Son (2001),”A model of the development of a periphyton community:resource and flow dynamic”, Ecological Modelling, 137(1) pp. 61-75.
Baxter, C., Hauer, F. R., and Woessner, W. W. (2003), “Measuring groundwater-stream water exchange: new techniques for installing minipiezometers and estimating hydraulic conductivity” Transactions of the American Fisheries Society, 132(3), 493-502.
Behrenfeld, M. J. and P. G. Falkowski (1997), “Photosynthetic Rate Derivd from Satellite-Based Chlorophyll Concentration”, Limnol. Oceanogr, 42(1) pp.1-20.
Berryman, A. A. and B. A. Hawkins (2006), “The refuge as an integrating concept in ecology and evolution”, Oikos, 115(1) pp.192-196.
Biggs, B. J. F. and M. E. Close (1989), “Periphyton biomass dynamics in gravel bed river : the relative effects of flows and nutrients” Freshwater Biology, 22(2): 209-231.
Biggs, D. C. and L. L. Sanchez (1997), “Nutrient enhanced primary productivity of the Texas-Louisiana continental shelf ”, J, Mar, Syst. 11 pp.237-247.
Boulton, A. J., S. Findlay, P. Marmonier, E. H. Stanley and H. M. Vallett (1998), “The functional significance of the hyporheic zone in streams and rivers”, Annual Reviw of Ecology and Systematics, 29 pp.59-81.
Boulton, A. J., Datry T., Kasahara T., Mutz M., Stanford J. A.(2010), “Ecology and management of the hyporheic zone: stream-groundwater interactions of running waters and their floodplains”, Benthol Soc., 29:26 – 40.
Brunke, M. and T. Gonser (1997), “The ecological significance of exchange processes between rivers and groundwater”, Freshwater Biology 37(1) pp.1-33.
Duong, T. T., M. Coste, A. Feurtet-Mazel, D. K. Dang, C. Gold, Y. S. Park, and A. Boudou (2006), “Impact of urban pollution from the Hanoi area on benthic diatom communities collected from the Red, Nhue and Tolich river (Vietnam)”, Hydrobiologia 563 pp.201-216.
Duong, T. T., A. Feurtet-Mazel, M. D. Coste, K. Dang and A. Boudou (2007), “Dynamics of diatom colonization process in some river influenced by urban pollution (Hanoi Vietnam)”, Ecol. Indic. 7 pp.839-851.
Fernald, A. G., Landers, D. H., and Wigington, P. J. (2006), “Water quality changes in hyporheic flow paths between a large gravel bed river and offchannel alcoves in Oregon, USA,” River Res Appl, 22(10), 1111-1124.
Fernald, A. G., Landers D. H. and Wighngton, JR P. J.(2006), “Water quality changes in hyporheic flow paths between a large gravel bed river and off-channel alcoves in Oregon, USA”, River Research And Applications, 22:1111 – 1124.
Fowler, R. T. and M. R. Scarsbrook (2002), “Influence of hydrologic exchange patterns on water chemistry and hyporheic invertebrate communities in three gravel-bed river”, New Zealand Journal of Marine and Freshwater Research, 36(3) pp.471-482. Doi:10.1080/00288330.2002.9517102.
Franken, R. J., R. G. Storey and D. D. Williams (2001), “Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream”, Hydrobiologia, 444(1-3) pp.183-195.
Gibert, J., J. Mathieu and F. Fournier (Eds.) (1997) “Groundwater/surface water ecotones: biological and hydrological interactions and management options,Cambridge”, Cambridge University Press.
Graham, J. M., C. A. Lembi, H. L. Adrian and D. F. Spencer (1995), “Physiological responses to temperature and irradiance in Spirogyra (zygnematales, harophyceae)”, Journal of Phycology, 31(4) pp.531-540.
Grimaldi, C. and Chaplot, V.(2000), “Nitrate depletion during within-stream transport: effect of exchange processes between stream water, the hyporheic and ripanian zone”, Water, Air and Soil Pollution, 124: 95 – 112.
Hancock, P. J., A. J. Boulton and W. F. Hump Hreys (2005), “Aquifers and hyporheic 80 zones: towards an ecological understanding of groundwater”, Hydrogeology Journal, 13(1) pp.98-111.
Hinkle, S. R., Duff, J. H., Triskab, F. J., Laenena A., Gatesc, K. E., Bencalab, D. A. and Wentza, S. R.(2001), “Linking hyporheic flow and nitrogen cycling near the Willamette River – a large river in Orgon, USA”, Journal of hydrology, 244:157 – 180.
Hondzo, M. H. Wang, C. Xu, V. Poole and A. Spacie (2003), “Dissolved oxygen dynamics of streams draining an urbanized and an agricultural catchment”, Environ Model Softw, 160 pp.145-161.
Irarte, J. L., H. E. Gonzalez, K. K. Liu, C. Rivas and C. Valenzuela. (2007), “Spatial and temporal variability of chlorophyll and primary productivity in surface waters of southern Chile (41.5-43°S)“, Estuarine, Coastal ad Shelf Science, 74 pp.471-480.
James, M. G., A. Patricia, E. G. Linda (1996a), “Physiological ecology of a species of the filamentous green alga Mougeotia under acidic conditions: Light and temperature effects on photosynthesis and respiration”, Limnol. Oceanogr., 4l(2) pp.1996,253-262.
James, M. G., A. Patricia, E. G. Linda (1996b), “Effects of pH and selected metals on growth of the filamentous green alga Mougeotia under acidic conditions”, Limnol. Oceanogr., 4l(2) pp.1996,263-270.
Jennifer, L. K. and M. F. Janet (2000), “Factors influencing the growth of Mougeotia in experimentally acidified mesocosms.” Canadian Journal of Fisheries and Aquatic Sciences, 57(3) pp.538-547.
Jones, J. B., Stuart, G. F. and Nancy, B. G.(1995), “Nitrification in the Hyporheic Zone of a Desert Stream Ecosystem”, Journal of the North American Benthological Society, 14:249 – 258.
Kennedy, J. T., and S. C. Whalen. (2008), “Seasonality and controls of phytoplankton productivity in the middle Cape Fear River, USA”, Hydrobiologia, 598 pp.203-217.
Lake, P. S. (2000), “Disturbance, patchiness, and diversity in streams”, Journal of th North Americn Benthological Society, 19(4) pp.573-592.
Mouw, J. E., J. A. Stanford and P. B. Alaback (2009), ”Influences of flooding and hyporheic exchange on floodplain plant richness and productivity”, River Res Appl, 25(8) pp.929-945.
Mulbry, W. S. Kondrad, C. Pizarro, E. Kebede-Westhead. (2008), “Treatment of dairy manure effluent using freshwater algae: Algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers Bioresour”, Technol. 99 pp.8137-8142.
Mulholland, P., B. J. Robrts, W. R. Hill and J. G. Smith. (2009), “Stream ecosystem responses to the 2007 spring freeze in the southeastern United States: unexpected effects of climate change”, Glob. Change Biol. 15 pp.1767-1776.
Olsen, D. A., and C. R. Townsend (2003), “Hyporheic community composition in a gravelbed stream: influence of vertical hydrological exchange, sediment structure and physicochemistry”, Freshwater Biology, 48(8) pp.1363-1378.
Orghidan, T. (1959), “Ein neuer Lebensraum des unterirdischen Wassers: der hyporheische Biotop”, Arch. Hydrobiol 55(5) pp.392-414.
Palmer, M. A., A. E. Bely and K. E. Berg (1992), ”Response of invertebrates to lotic disturbace: a test of the hyporheic refge hypothesis”, Oecologia, 89(2) pp.182-194.
Palmer-Felgate, E. J., H. P. Jarvie, R. J. Williams, R. J. G. Mortimer, M. Loewenthal, and C. Neal (2008), “Phosphorus dynamics and productivity in a sewage-impacted lowland chalk stream J”, Hydrol, 351 pp.89-97.
Poff, N. L. and J. V. Ward (1989), “Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns”, Can. J. Fish. Aquat. Sci., S46(10) pp.1805-1818.
Rosemond, A. D., P. J. Mulholland and J. W. Elwood (1993), “Top-down and bottom-up control of stream periphyton: Effects of nutrients and herbivores”, Ecology, 74 pp.1264- 1280.
Sandern, C. D., P. M. Engevold, S. Neerhofm and T. J. Ehlinger (2002), “Nuisance Cladophora in Urban Stream: habitats, seasonality, morphology, production, heavy metals, foodweb bottleneck”, Conference of Cladophora.
Sedell, J. R., G. H. Reeves, F. R. Hauer, J. A. Stanford and C. P. Hawkins (1990), “Role of refugia in recovery from disturbnces: modern fragmented and disconnected river systems”, Environmental Management, 14(5) pp.711-724.
Simons, J. and A. P. van Been (1990), “Spirogyra species and accompanying alage from pools and ditches in The Netherlands” Aquatic Botany, 37(3) pp.247-269.
Smock, L. A., J. E. Gladden, J. L. Riekenberg, L. C. Smith and C. R. Black (1992), “Lotic macroinvertebrate production in three dimensions: channel surface, hyporheic, and floodplain environments”, Ecology, pp.876-886.
Soulsby, C., Malcolm, I. A., Tetzlaff, D. and Youngson, A. F.(2009), “Seasonal and inter-annual variability in hyporheic water quality revealed by continuous monitoring in a salmon spawning stream”, River Research and Applications, 25:1304 – 1319.
Stephen S. and Timothy J. Entwisle(2015), “Mougeotia (Zygnemaceae, Streptophyta) in Australia” Telopea, 18: 481–494.
Sushil, S. D., A. S. Dixit and J. P. Smol (1999), “Lake sediment Chrysophyte scales from the northeastern USA and their relationship to environmental variables”, J. Phycol, 35 pp.903-918.
Triska F. J., J. H. Duff and R. J. Avanzino (1993), ” Patterns of hydrological exchange and nutrient transformation in the hyporheic zone of a gravel-bottom stram: examining terrestrial-aquatic linkages”, Freshw. Biol., 29(2) pp.259-274.
Toth, J. (1963), “A theoretical analysis of groundwater flow in small drainage asins”, J. Geophys. Res. Oceans, 68(16) pp.4795-4812.
Valett, H. M., C. C. Hakenkamp and A. J. Boulton (1993), “Perspectives on the hyporheic zone: integrating hydrology and biology: Introduction”, Journal of the North American Benthological Society, pp.40-43.
Veriver, P., J. Gibert, P. Marmonier and M.-J. Dole-Olivier (1992), “A perspectives on thepermeability of the surface freshwater-groundwater ecotone”, Journal of the North American Benthological Society, pp.93-102.
White, D. S. (1993), “Perspectives on defining and delineating hyporheic zones”, Journal of the North American Benthological Society, pp.61-69.
Williams, D. D. and H. B. N. Hynes (1974), “The occurrence of benthos deep in the substratum of a stream”, Freshw. Biol., 4(3) pp.233-256.
Wyatt, K. H., Hauer, F. R. and Pessoney (2008), F. F., “Benthic algal response to hyporheic-surface water exchange in an alluvial river”, Hydrobiologia, 607(1), 151-161.
Zarnetske, J. P., Haggerty, R. and Wondzell, S. M.(2011), ”Dynamics of nitrate production and removal as a function of residence time in the hyporheic Zone”, J. Geophys. Res., 116:1025 – 1356.