簡易檢索 / 詳目顯示

研究生: 謝惠婷
Sei, Hei-Tin
論文名稱: 以奈米級模板製作不同形狀金奈米粒子與二氧化矽中空螢光奈米球
Nanotemplation forming particles︰ Au and fluorescent SiO2 nanoparticles
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 84
中文關鍵詞: 模板金奈米粒子二氧化矽
外文關鍵詞: silica, gold nanoparticles, template
相關次數: 點閱:76下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文研究中以奈米級模板去製作不同形狀的金奈米粒子與二氧化矽中空螢光奈米球,在第一部分的研究中以軟性明膠奈米球作為模板,明膠奈米粒子具有很好的水溶性因此實驗中利用種子間接成長法(seed mediated growth method)的方式於模板上成長出金奈米棒、雙箭頭金奈米棒與四足狀金奈米粒子等三種形狀,明膠奈米球/金奈米棒藉由改變銀離子的濃度可具有光學可調性,並且金奈米棒還能夠在明膠模板上進行二次成長合成出具有雙箭頭形狀的金奈米棒,第三種形狀即是在明膠奈米球表面成長四足狀的金奈米粒子,從紫外光-可見光吸收光譜圖的量測結果中發現即使經過離心清洗後披覆在明膠奈米球表面的金粒子的吸收值幾乎沒有下降,表示沒有不可逆的聚集現象產生而仍然具有很好的光學穩定性。
    第二部分研究中以Gd2O(CO)3‧H2O奈米粒子此硬性材質的模板合成二氧化矽空球,經由高溫鍛燒後二氧化矽空球結構本身的缺陷在給予激發能量後會產生螢光,其中以mol%APTES=6%的二氧化矽空球以升溫速率為2℃/min條件下鍛燒300℃並持溫1小時具有最好的量子產率。

    In this study, nanoscale template approach was used to fabricate different shapes of gold nanoparticles and fluorescent hollow silica nanospheres. In partⅠ, gelatin nanoparticles was employed as a soft template, because of its excellent water-soluble property, therefore by use seed mediated growth method, we are able to grow the gold nanorods, gold arrow headed nanorods and gold nanotetrapods. Gelatin nanoparticle/Au nanorods would exist adjustable optical properties by varying the concentration of silver ion. Furthermore, it also allowed the synthesis of secondary growth with arrowhead shape of gold nanorods. In addition to, UV-Visble absorption of the Gelatin/Au nanoparticles were found unchanged even after several times of centrifugation. It proved that there is no irreversible aggregation phenomenon and still maintain an excellent optical stability.
    In part Ⅱ, Gd2O(CO)3 ‧H2O nanoparticles as a hard template was used to synthesize hollow silica nanospheres. Calcination of hollow silica nanosphere created defects in the structure which can irradiated fluorescence. The results showed mol% APTES = 6% of hollow silica nanospheres were dried and subsequently calcined in air at 400oC for 1h at heating rate 2oC/min condition provided best quantum yield.

    目錄..................................................Ⅰ 表目錄................................................Ⅲ 圖目錄................................................Ⅴ 第一章 緒論.........................................1 1-1奈米材料的簡介.....................................1 1-2奈米級模板的應用...................................3 1-2-1以模板製備中空型奈米結構.........................5 1-2-2以模板為中心生成殼-核結構........................8 1-2-3創造多功能性奈米粒子............................11 1-3 金奈米粒子的製備方法.............................14 1-3-1 種子間接成長法(Seed-Mediated Growth) ..........16 1-4金奈米粒子的穩定性................................19 1-5二氧化矽空球的製備................................21 1-5-1層接層法(Layer-by-Layer Method) ................21 1-5-2微乳化法(Micro-emulsions Method) ...............23 1-5-3溶膠-凝膠法(Sol-Gel Method) ....................24 1-6二氧化矽的光學性質................................26 第二章 明膠奈米球/金奈米粒子實驗部分................29 2-1研究動機與目的....................................30 2-2實驗藥品與儀器鑑定................................32 2-3實驗步驟..........................................34 2-4明膠球型粒子的製備................................35 2-5金晶種的製備......................................35 2-6製備明膠奈米球/金奈米棒...........................36 2-7探討明膠奈米球/金奈米棒光學可調性.................36 2-8製備明膠奈米球/雙箭頭金奈米棒.....................36 2-9製備明膠奈米球/四足狀金奈米粒子...................37 第三章 明膠奈米球/金奈米粒子結果與討論..............38 3-1 明膠奈米球型模板.................................39 3-2奈米金晶種探討....................................41 3-3明膠奈米球/金奈米棒的探討.........................42 3-4探討明膠奈米球/金奈米棒之光學可調性...............47 3-5明膠奈米球/雙箭頭金奈米棒探討.....................50 3-6明膠奈米球/四足狀金奈米粒子.......................53 3-6-1維他命C濃度對四足狀金奈米粒子的影響..........53 3-6-2晶種濃度對四足狀金奈米粒子的影響.............56 3-6-3明膠奈米球/四足狀金奈米粒子探討..............58 第四章 二氧化矽中空螢光奈米球實驗部分...............60 4-1研究動機與目的....................................61 4-2實驗藥品與儀器鑑定................................63 4-3實驗步驟..........................................65 4-4製備Gd2O(CO)3‧H2O粒子............................66 4-5製備二氧化矽中空奈米球............................66 4-6製備二氧化矽中空螢光奈米球........................67 4-7製備不同APTES含量之二氧化矽中空螢光奈米球.........67 第五章 二氧化矽中空螢光奈米球結果與討論.............68 5-1 Gd2O(CO)3‧H2O之探討.............................69 5-2二氧化矽中空奈米球之探討..........................71 5-3製備二氧化矽中空螢光奈米球........................74 5-4升溫速率對螢光量子產率(QY%)的影響探討.............75 5-5不同APTES含量對螢光量子產率(QY%)的影響探討........76 5-6二氧化矽中空螢光奈米球形貌與光學性質探討..........78 第六章 結論.........................................80 參考文獻.............................................82

    1. J. M. Lehn, Supramolecular Ensembles VCH:New York. 1995
    2. I. P . Parkin, R. G. Palgrave, J. Mater. Chem. 2005,
    15, 1689.
    3. M. Faraday, Philo. Trans. R. Soc. 1875, 147, 145.
    4. H. W. Kroto, J. R. Heath, S. C. O’Brien, R.F. Curl, R.
    E. Smally, Nature. 1985, 318, 162.
    5. S. Iijima, Nature. 1991, 354, 56.
    6. J. M. Nam, S. J. Park, C. A. Mirkin, J. Am. Chem. Soc.
    2002, 124, 3820.
    7. C. J. Orendorff, A. Gole, T. K. Sau, C. J. Murphy,
    Anal. Chem. 2005, 77, 3261.
    8. Warren C. W. Chan, Dustin J. Maxwell, X. H. Gao, Robert
    E. Bailey, M. Y. Han, S. M. Nie, Curr. Opin.
    Biotechnol. 2002, 13, 40.
    9. X. Y. Wu, H. J. Liu, J. Q. Liu, Kari N. Haley, Joseph
    A. Treadway, J. Peter. Larson, N. F. Ge, Frank Peale,
    Marcel P. Bruchez, Nat. Biotechnol. 2003, 21, 41.
    10.李奮生, 史紅虎,“打造奈米經濟:引爆21世紀科技”, 書泉出
    版, 2002
    11.林建中,“奈米科技:基礎與實務”, 新文京, 2006
    12. C. C. Chen, Y. C. Liu, C. H. Wu, C. C. Yeh, M. T. Su,
    Y. C. Wu, Adv. Mater. 2005, 17, 404.
    13.顧寧, 付德剛, 張海黔,“奈米技術與應用”, 滄海書局, 2003
    14. J. Jang, H. Yoon, Adv. Mater. 2004, 16, 799.
    15. Y. Ono, K. Nakashima, M. Sano, Y. Kanekiyo, K. Inoue,
    J. Hojo, S. Shinkai, Chem. Commun. 1988, 1477.
    16. J. H. Jung, S. H. Lee, J. S. Yoo, K. Yoshida, T.
    Shimizu, S. Shinkai, Chem. Eur. J. 2003, 9, 5307.
    17. H. Ogihara, S. Takenaka, I. Yamanaka, E. Tanabe, A.
    Genseki, K. Otsuka, Chem. Mater. 2006, 18, 996.
    18. J. Zygmunt, F. Krumeich, R. Nesper, Adv. Mater. 2003,
    15, 1538.
    19. J. E. Meegan, A. Aggeli, N. Boden, R. Brydson, A. P.
    Brown, L. Carrick, A. R. Brough, A. Hussain, R. J.
    Ansell, Adv. Mater. 2004, 16, 31.
    20. Y. Xia, Y. Y. Sun, Y. Wu,B. Mayers, B. Gates,Y. Yin,
    F. Kim,H. Yan, Adv. Mater. 2003, 15, 353.
    21.林東毅,“奈米容器:具有可控制物質進出支奈米結構”,
    國立成功大學化學研究所,2005
    22. M. Ohmori, E. Matijevic, J. Colloid. Interface. Sci.
    1992, 150, 594.
    23. Wilcox. D. L, Berg. M, Bernat. T, Kellerman. D,
    Cochran. J. K, Materials Research Society. 1995, 372.
    24. J. K. Cocharn, Curr. Opin. Solid State Mater. Sci.
    1998, 3, 474.
    25. F. Caruso, Chem. Eur. J. 2000, 6, 413.
    26. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, N. J.
    Halas, Chem. Phys. Lett. 1998, 288, 243.
    27. V. S. Maceira, M. A. Duarte, M. Farle, A. Quintela, K.
    Sieradzki, R. Diaz, Chem. Mater. 2006, 18, 2701.
    28. S. I. Stoeva, F. W. Huo, J. S. Lee, C. A. Mirkin, J.
    Am. Chem. Soc. 2005, 127, 15362.
    29. F. Caruso, R. A. Caruso, H. Mohwald, Science. 1998,
    282, 1111.
    30. F Caruso, E. Donath, Mohwald. H J. Phys. Chem. B.
    1998, 102, 2011.
    31. F. Caruso, Top. Curr. Chem. 2003, 227, 145.
    32. W. S. Choi, H. Y. Koo, D. Y. Kim, Adv. Mater. 2007,
    19, 451.
    33. Y. C. Pu, J. R. Hwu, W. C. Su, D. B. Shieh, Y. H.
    Tzeng, C. S. Yeh, J. Am. Chem. Soc. 2006, 128, 11606.
    32. Y. Lu, J. McLellan, Y. Xia, Langmuir. 2004, 20, 3464.
    33. D. Caruntu, B. L. Cushing, G. Caruntu, C. J. O’
    Connor, J. Mater. Chem. 2005, 17, 3398.
    34. F. H. Lin, R. A. Doong, Instrum. Today. 2006, 18, 7.
    35. H. Y. Park, J. M. Yang, S. B. Seo, K. J. Kim, J. S.
    Suh, D. H. Kim, S. J. Haam, K. H. Yoo, Small. 2008, 4,
    192.
    36. K. W. Hu, F. Y. Jhang, C. H. Su, C. S. Yeh, J. Mater.
    Chem. 2009, 19, 2147
    37. M. A. Hayat, Academic Press: San Diego. 1989
    38. W. P. Wuelfing, R. W. Murray, J. Phys. Chem. B. 2002,
    106, 3139.
    39. N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K.
    Mullen, A. Yasuda, T. Vossmeyer, Nano Lett. 2002, 2,
    551.
    40. Y. J. Kim, R. C. Johnson, J. T. Hupp, Nano Lett. 2001,
    1, 165.
    41. C. A. Mirkin, Inorg. Chem. 2000, 39, 2258.
    42. D. L. Klein, P. L. McEuen, J. E. B. Katari, R. Roth,
    A. P. Alivisatos, Appl. Phys. Lett. 1996, 68, 2574.
    43. T. Sato, H. Ahmed, D. Brown, B. F. G. Johnson, J.
    Appl. Phys. 1997, 82, 696.
    44. M. D. Musick, C. D. Keating, L. A. Lyon, S. L. Botsko,
    D. J. Pena, W. D. Holliway, T. M. McEvoy, J. N.
    Richardson, M. J. Natan, Chem. Mater. 2000, 12, 2869.
    45. W. P. Wuelfing, F. P. Zamborini, A. C. Templeton, X.
    G. Wen, H. Yoon,R. W. Murray, Chem. Mater. 2001, 13,
    87.
    46. G. R. Bamwenda, S. Tsubota, T. Nakamura, M. Haruta,
    Catal. Lett. 1997, 44, 83.
    47. J. J. Pietron, R. M. Stroud, D. R. Rolison, Nano Lett.
    2002, 2, 545
    48. J. P. Juste, M. Marzán, S. Carnie, Y. C. Chen, P.
    Mulvaney, Adv. Funct. Mater. 2003, 14, 571.
    49. N. R. Jana, L. Gearheart, C. J. Murphy, Langmuir.
    2001, 17, 6782.
    50. J. Gao, C. M. Bender, C. J. Murphy, Langmuir. 2003,
    19, 9065.
    51. T. K. Sau, C. J. Murphy, J. Am. Chem. Soc. 2004, 126,
    8648.
    52. Y. Sun, Y. Xia, Science. 2002, 298, 2176.
    53. E. Connor, J. Mwamuka, A. Gole, C. Murphy, M. Wyatt,
    Small. 2005, 1, 325.
    54. H. Y. Koo, W. S. Choi, D. Y. Kim, Small. 2008, 4, 742.
    55. M. Ohmori, E. Matijevic, J. Colloid Interface Sci.
    1992, 150, 594.
    56. F. Caruso, H. Lichtenfeld, M. Giersig, H. Möhwald, J.
    Am. Chem. Soc. 1998, 120, 8523.
    57. M. S. Wang, J. N. Cha, K. Choi, T. J. Deming, G. D.
    Stucky, Nano Lett. 2002, 2, 583.
    58. W. Wua, D. Caruntua, A. Martina, M. H. Yua, C. J. O’
    Connora, W. L. Zhoua, J. F. Chenb, J. Magn. Magn.
    Mater. 2007, 311, 578.
    59. C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T.
    Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, L.
    W. Lo, Adv. Funct. Mater. 2009, 19, 21.
    60. I. P. Santos, J. P. Juste, M. L. Marzán, Chem. Mater.
    2006, 18, 2465.
    61. T. H. Kim, G. Li, W. H. Park, T. S. Lee, Mol. Cryst.
    Liq. Cryst. 2006, 445, 185.
    62. L. M. Rossi, L. Shi, F. H. Quina, Z. Rosenzweig,
    Langmuir. 2005, 21, 4277.
    63. A. van Blaaderen, A. Vrij, Langmuir. 1992, 8, 2921.
    64. L. H. Sloof, M. J. de Dood, A. van Blaaderen, A.
    Polman, Appl. Phys. Lett. 2000, 76, 3682
    65. Y. Chan, J. P. Zimmer, M. Stroh, J. S. Steckel, R. K.
    Jain, M. G. Bawendi,Adv. Mater. 2004, 16, 2092.
    66. A. M. Jakob, T. A. Schmedake, Chem. Mater. 2006, 18,
    3173.
    67. H. Green, P. Le, J. Grey, T. Au, J. Sailor, Science.
    1997, 276, 1826.
    68. J. Juste, I. Santos, M. Marzán, P. Mulvaney ,
    Coordination Chemistry Reviews. 2005, 249, 1870.
    69. B. Nikoobakht, A. El-Sayed, Chem. Mater. 2003, 15,
    1957-1962
    70. B. Nikoobakht, A. El-Sayed, Langmuir. 2001, 17, 6368
    71. Y. J. Xiang, X. C. Wu, D. F. Liu, L. L. Feng, K.
    Zhang, W. G. Chu, W. Y. Zhou, S. S. Xie, J. Phys.
    Chem. C. 2008, 112, 3203.
    72. L. F. Gou, J. Murphy, Chem. Mater. 2005, 17, 3668.
    73. K. Sau, J. Murphy, J. Am. Chem. Soc. 2004, 126, 8648.
    74. I. F. Li, C. H. Su, H. S. Sheu, H. C. Chiu, Y. W. Lo,
    W. T. Lin, J. H. Chen, C. S. Yeh, Adv. Funct. Mater.
    2008, 18, 766.
    75. M. Doneg, G. Hickey, F. Wuister, D. Vanmaekelbergh, A.
    Meijerink, J. Phys. Chem. B. 2003, 107, 489.

    下載圖示 校內:立即公開
    校外:2009-07-27公開
    QR CODE